University of South Florida
USE UNIVERSITY OF Scholar Commons

Thermodynamic Model and the Controlling Variables of Phosphate Lattice Loss

Mohammad Abutayeh
University of South Florida

Follow this and additional works at: https://scholarcommons.usf.edu/etd
Part of the Chemical Engineering Commons

Scholar Commons Citation

Abutayeh, Mohammad, "Thermodynamic Model and the Controlling Variables of Phosphate Lattice Loss" (1999). Graduate Theses and Dissertations.
https://scholarcommons.usf.edu/etd/1551

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Graduate School
University of South Florida
Tampa, Florida

CERTIFICATE OF APPROVAL
\qquad
Master's Thesis

This is to certify that the Master's Thesis of

MOHAMMAD ABUTAYEH

with a major in Chemical Engineering has been approved by the Examining Committee on November 22, 1999
as satisfactory for the thesis requirement for the Master of Science in Chemical Engineering degree

Examining Committee:

Major Pfofessor: J. Carlos-Busot, Ph.D.

Co-Major Professory Lulis H. Garcia-Rubio, Ph.D.

Member Professor: Scott W. Campbell, Ph.D.

THERMODYNAMIC MODEL AND THE CONTROLLING VARIABLES

 OF PHOSPHATE LATTICE LOSS
by

MOHAMMAD ABUTAYEH

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in Chemical Engineering Department of Chemical Engineering College of Engineering University of South Florida

December 1999

Major Professor: J. Carlos Busot, Ph.D.

ACKNOWLEDGEMENTS

I would like to first thank God for giving me the patience and the strength to complete this work. Then, I wish to express my deepest appreciation to my major professor, Dr. J. Carlos Busot, for his valuable criticism and professional guidance. I would also like to express my gratitude to my co-major professor, Dr. L. Garcia-Rubio, for encouraging and providing me with the opportunity to continue my graduate studies. I must also thank my committee member professor, Dr. Scott W. Campbell, for his support and tremendous knowledge that guided me throughout my academic years.

Last but not least, I like to extend my deepest appreciation to my family and friends for their support and motivation throughout my years of education in general and to Cargill Fertilizer, Inc. for generously supporting this project.

TABLE OF CONTENTS

LIST OF TABLES iii
LIST OF FIGURES iv
LIST OF SYMBOLS vi
ABSTRACT ix
CHAPTER 1. INTRODUCTION 1
1.1 Phosphoric Acid Manufacturing 1
1.2 Phosphate Losses 2
1.3 Thermodynamic Model of Phosphate Lattice Loss 4
CHAPTER 2. THERMODYNAMICS OF ELECTROLYTE SOLUTIONS 5
2.1 Ionic Equilibrium 5
2.2 Ionic Activity 9
2.3 Ionic Activity Coefficient Models 10
2.4 Solid-Liquid Equilibria in Aqueous Solutions 15
2.5 Vapor-Liquid Equilibria in Aqueous Solutions 16
CHAPTER 3. THERMODYNAMIC MODEL OF PHOSPHATE LATTICE LOSS 17
3.1 Model Description 17
3.2 Model Simulation 18
CHAPTER 4. RESULTS AND DISCUSSION 27
4.1 Temperature Effect on Equilibrium 27
4.2 Temperature Effect on System Variables 32
4.3 Sulfuric Acid Effect on System Variables. 40
4.4 Model Validation 48
CHAPTER 5. SUMMARY, CONCLUSION, AND RECOMMENDATIONS 52
5.1 Summary 52
5.2 Conclusion 53
5.3 Recommendations 54
REFERENCES 55
APPENDICES 57
Appendix 1. Literature and Experimental Data 58
Appendix 2. Matlab Code for Regression of A and β Literature Data 60
Appendix 3. Matlab Code for Regression of $K_{H S O 4}$ Experimental Data 61
Appendix 4. Matlab Code for Regression of $K_{H 3 P O 4}$ Experimental Data 62
Appendix 5. Matlab Code for Regression of $K_{H 2 P O 4}$ Experimental Data 63
Appendix 6. Matlab Code for Regression of $K_{\text {Gypsum }}$ Experimental Data 64
Appendix 7. Matlab Code for Regression of $K_{D C P D}$ Experimental Data 65
Appendix 8. TK Solver Code of Thermodynamic Model 66

LIST OF TABLES

Table 1. Approximate Effective Ionic Radii in Aqueous Solutions at $25^{\circ} \mathrm{C}$ 11
Table 2. Bromley's Parameters for Different Electrolytes at $25^{\circ} \mathrm{C}$ 14
Table 3. Literature and Regressed Values of Thermodynamic Functions 27
Table 4. Debye-Hückel Parameters Data. 58
Table 5. Equilibrium Constants and Solubility Products at Various Temperatures. 58
Table 6. Physical and Reference State Properties 59
Table 7. Janikowski's Data 59

LIST OF FIGURES

Figure 1. Flowsheet of a Phosphoric Acid Manufacturing Process 2
Figure 2. Gypsum Crystals. Shown Bar's Length is 100 microns 3
Figure 3. Debye-Hückel Parameter A as a Function of Temperature 12
Figure 4. Debye-Hückel Parameter β as a Function of Temperature 12
Figure 5. $K_{H S O 4}$ as a Function of Temperature 29
Figure 6. $K_{H 3 P O 4}$ as a Function of Temperature 30
Figure 7. $K_{H 2 P O 4}$ as a Function of Temperature 30
Figure 8. $K_{\text {Gypsum }}$ as a Function of Temperature 31
Figure 9. $K_{D C P D}$ as a Function of Temperature 31
Figure 10. Ionic Strength Versus Temperature - Ideal Solution Model 34
Figure 11. Ionic Strength Versus Temperature - Debye-Hückel Model 34
Figure 12. Ionic Strength Versus Temperature - Robinson-Guggenheim-Bates Model 35
Figure 13. Ionic Strength at $1.5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ as a Function of Temperature 35
Figure 14. $p H$ Versus Temperature - Ideal Solution Model 36
Figure 15. pH Versus Temperature - Debye-Hückel Model 36
Figure 16. pH Versus Temperature - Robinson-Guggenheim-Bates Model 37
Figure 17. pH at $1.5 \%_{\mathrm{H}_{2} \mathrm{SO}_{4} \text { as a Function of Temperature }}$ 37
Figure 18. Lattice Loss Versus Temperature - Ideal Solution Model 38
Figure 19. Lattice Loss Versus Temperature - Debye-Hückel Model 38
Figure 20. Lattice Loss Versus Temperature - Robinson-Guggenheim-Bates Model 39
Figure 21. Lattice Loss at $1.5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ as a Function of Temperature 39
Figure 22. Ionic Strength Versus $\mathrm{H}_{2} \mathrm{HO}_{4}$ - Ideal Solution Model 42
Figure 23. Ionic Strength Versus $\%_{2} \mathrm{H}_{2} \mathrm{SO}_{4}$ - Debye-Hückel Model 42
Figure 24. Ionic Strength Versus $\%_{\mathrm{H}_{2} \mathrm{SO}_{4} \text { - Robinson-Guggenheim-Bates Model }}$ 43
Figure 25. Ionic Strength at $25^{\circ} \mathrm{C}$ as a Function of $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ 43
Figure 26. $p H$ Versus $\%_{\mathrm{H}_{2} \mathrm{SO}_{4} \text { - Ideal Solution Model }}$ 44
Figure 27. pH Versus $\mathrm{\%}_{2} \mathrm{H}_{2}$ - Debye-Hückel Model 44
Figure 28. pH Versus $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ - Robinson-Guggenheim-Bates Model 45
Figure 29. pH at $25^{\circ} \mathrm{C}$ as a Function of $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ 45
Figure 30. Lattice Loss Versus $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ - Ideal Solution Model 46
Figure 31. Lattice Loss Versus $\%_{H_{2}} \mathrm{SO}_{4}$ - Debye-Hückel Model. 46
 47
Figure 33. Lattice Loss at $25^{\circ} \mathrm{C}$ as a Function of $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ 47
Figure 34. Griffith Prediction of Lattice Loss at $25^{\circ} \mathrm{C}$ 49
Figure 35. Model Prediction of Lattice Loss at $25^{\circ} \mathrm{C}$. 49
Figure 36. Model Prediction of Lattice Loss at $78.5^{\circ} \mathrm{C}$. 51
Figure 37. Adjusted Model Prediction of Lattice Loss at $78.5^{\circ} \mathrm{C}$ 51

LIST OF SYMBOLS

\% $\mathrm{H}_{2} \mathrm{SO}_{4}$	Percent $\mathrm{H}_{2} \mathrm{SO}_{4}$ Equivalence by Mass in Liquid [$\mathrm{Kg} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{Kg}$ Liquid]
$\% \mathrm{P}_{2} \mathrm{O}_{5}$	Percent $\mathrm{P}_{2} \mathrm{O}_{5}$ Equivalence by Mass in Liquid [$\mathrm{Kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{Kg}$ Liquid]
$\% \mathrm{P}_{2} \mathrm{O}_{5}{ }^{(\mathcal{S})}$	Percent $\mathrm{P}_{2} \mathrm{O}_{5}$ Equivalence by Mass in Solid [$\mathrm{Kg} \mathrm{P} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{Kg}$ Solid]
A	Debye-Hückel Constant
a_{i}	Activity of Species i [$\mathrm{mol} \mathrm{i/} \mathrm{Kg} \mathrm{H}_{2} \mathrm{O}$]
B^{+}, B^{-}	Bromley's Interaction Parameter Components
B_{i}	Bromley's Interaction Parameter of Species i
$B_{i j}$	Bromley's Interaction Parameter of Species i
$C p_{i}$	Partial Molar Specific Heat of Species i [$\mathrm{J} /(\mathrm{mol} \mathrm{i} \cdot \mathrm{K})$]
F_{i}	Summation of Bromley's Interaction Parameters of Species i
f_{i}	Fugacity of Vapor Species i
G_{i}	Partial Molar Gibbs Free Energy of Species i [J/mol i]
H_{i}	Partial Molar Enthalpy of Species i [J/mol i]
I	Ionic Strength [$\mathrm{mol} / \mathrm{Kg} \mathrm{H}_{2} \mathrm{O}$]
K	Dissolution Equilibrium Constant
Kaq	Vapor-Liquid Equilibrium Constant
Ksp	Solubility Product
M_{i}	Mass of Species i Per Mass of Water [$\mathrm{Kg} \mathrm{i} / \mathrm{Kg} \mathrm{H}_{2} \mathrm{O}$]
m_{i}	Molality of Species i [$\mathrm{mol} \mathrm{i} / \mathrm{Kg} \mathrm{H}_{2} \mathrm{O}$]

$M W_{i}$	Molecular Weight of Species i [$\mathrm{Kg} \mathrm{i} / \mathrm{mol} \mathrm{i}$]
n_{i}	Number of Moles of Species i [mol i]
P	Total Pressure [Pa]
P_{i}	Partial Pressure of Species i [Pa]
pH	Liquid Phase pH
R	Ideal Gas Constant [$\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K}$)]
r_{i}	Effective Ionic Radius of Species i [Σ]
T	Temperature [K]
TPM	Total Phosphate Molality [mol TPM/ $\mathrm{Kg} \mathrm{H}_{2} \mathrm{O}$]
TSM	Total Sulfate Molality [mol TSM/ $\mathrm{Kg} \mathrm{H}_{2} \mathrm{O}$]
x_{i}	Mole Fraction of Species i in Solid [mol i/mol Solid]
$Z_{i j}$	Bromley's Interaction Parameter of Species i
z_{i}	Ionic Charge of Species i [e]
β	Debye-Hückel Constant
γ_{i}	Activity Coefficient of Species i
δ^{+}, δ	Bromley's Interaction Parameter Components
μ_{i}	Chemical Potential of Species i [J/mol i]
v_{i}	Stoichiometric Coefficient of Species i [J/mol i]
$\rho_{\mathrm{H} 2 \mathrm{O}}$	Reference State Density of Water [$\left.\mathrm{Kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{L}\right]$
ω_{i}	Mass Fraction of Species i in Solid [$\mathrm{Kg} \mathrm{i} / \mathrm{Kg}$ Solid]
$\triangle C p$	Molar Specific Heat of Dissolution or Solubility [J/(mol-K)]
ΔG	Molar Gibbs Free Energy of Dissolution or Solubility [$\mathrm{J} / \mathrm{mol}$]
ΔH	Molar Enthalpy of Dissolution or Solubility [J/mol]

$\Theta_{\mathrm{H} 2 \mathrm{SO} 4} \quad$ Moles $\mathrm{H}_{2} \mathrm{SO}_{4}$ Equivalence Per Moles of TSM [mol $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{mol}$ TSM]
$\Theta_{\text {P2O5 }} \quad$ Moles $\mathrm{P}_{2} \mathrm{O}_{5}$ Equivalence Per Moles of TPM [mol $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{mol}$ TPM]
$\Phi_{\mathrm{H} 2 \mathrm{O}} \quad$ Mass Fraction of Water in Liquid $\left[\mathrm{Kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{Kg}\right.$ Liquid $]$
$\Psi_{P 205} \quad$ Moles $\mathrm{P}_{2} \mathrm{O}_{5}$ Equivalence Per Moles of DCPD [mol $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{mol}$ DCPD]

Superscripts

$+\quad$ Proton Charge $\left[+e=+1.60217733(49) 310^{-19} \mathrm{C}\right]$

- Electron Charge $\left[-e=-1.60217733(49) 310^{-19} \mathrm{C}\right]$
$0 \quad$ Reference State Property
$L \quad$ Liquid Phase Property
$S \quad$ Solid Phase Property
$V \quad$ Vapor Phase Property

THERMODYNAMIC MODEL AND THE CONTROLLING VARIABLES OF PHOSPHATE LATTICE LOSS

by

MOHAMMAD ABUTAYEH

An Abstract

Of a thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering Department of Chemical Engineering College of Engineering University of South Florida

December 1999

Major Professor: J. Carlos Busot, Ph.D.

A thermodynamic model was developed based upon five equilibrium reactions to predict the limits of distribution of phosphates between the liquid and the solid phases in a reactor used to extract phosphoric acid from phosphate rock. A computer code was generated to carry out different simulations of the model using several inputs of temperatures and liquid phase sulfuric acid contents. Ideal Solution, Debye-Hückel, and Robinson-Guggenheim-Bates electrolyte activity coefficient models were employed alternately in each simulation to complete the thermodynamic model and the outputs were compared to one another.

Experimental data of equilibrium constants were regressed to adjust the values of $\Delta C p^{\circ}$ and ΔH° used in the simulations to obtain a more accurate representation of the thermodynamic equilibrium. Results for ionic strength, liquid phase $p H$, and phosphate lattice loss were used to analyze temperature and liquid phase sulfuric acid content effects on the reacting system.

Completing the thermodynamic model with Ideal Solution and Debye-Hückel electrolyte activity coefficient models was found to bind all predictions of phosphate lattice loss. The model prediction of phosphate losses was found to give a lower bound to the real phosphate losses. Furthermore, decreasing temperature and increasing liquid phase sulfuric acid content was found to minimize phosphate lattice loss.

Abstract Approved: \qquad
Major Professor: J. Carlos Busot, Ph.D.
Professor, Department of Chemical Engineering

Date Approved: \qquad

CHAPTER 1. INTRODUCTION

1.1 Phosphoric Acid Manufacturing

According to the Dictionary of Chemistry ${ }^{(1)}$, phosphoric acid, also known as orthophosphoric acid, is a water-soluble transparent crystal melting at $42^{\circ} \mathrm{C}$. It is used in fertilizers, soft drinks, flavor syrups, pharmaceuticals, animal feeds, water treatment, and to pickle and rust-proof metals.

The dihydrate process is the most common process in the industrial manufacture of phosphoric acid used by the Florida fertilizer plants. As shown in Figure 1, phosphate rock $\left(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right)$ is grounded into small granules to facilitate its transport and to increase its reaction surface area. The granules are then sent to a large Continuous Stirred Tubular Reactor (CSTR) along with sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ and water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ where the following reaction is carried out:
$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
The reaction products, phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ and gypsum $\left(\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ as well as the unreacted reactants and byproducts, are sent to a filter then to a clarifier to separate phosphoric acid from the solid gypsum. Excess water is used in the filter to wash off phosphoric acid from gypsum and to obtain the desired concentration of phosphoric acid. Some of the reactor slurry is recycled back to the reactor from the clarifier for further extraction of phosphoric acid ${ }^{(2)}$.

Figure 1. Flowsheet of a Phosphoric Acid Manufacturing Process

1.2 Phosphate Losses

The optimization of the process of manufacturing phosphoric acid can take several paths, one of which is the minimization of phosphate loss. Phosphate loss can occur in many ways and is mainly attributed to the formation of gypsum crystals. The extraction of phosphoric acid from phosphate rock in the dihydrate process involves the formation of gypsum crystals, shown in Figure 2, as a reaction product in the CSTR.

Figure 2. Gypsum Crystals. Shown Bar's Length is 100 microns

One type of phosphate loss takes place during the filtering of the reaction slurry where some of the phosphoric acid fails to wash away from the solid filter cake. This type of loss can be avoided by increasing the filter size or by using excess washing water to improve the filtering process.

A second type of phosphate loss occurs due to poor mixing of the reactor contents. When phosphate rock encounters a local high concentration of sulfuric acid, gypsum will crystallize very rapidly because of the very fast reaction between phosphate rock and sulfuric acid. Gypsum will precipitate covering the unreacted rock granules and forming crystals with an inner core of unutilized phosphates, which is lost as a solid waste. This problem can be overcome by improving the mixing mechanism to eliminate the local over-concentrated zones in the reactor.

A third type of loss arises from the formation of dicalcium phosphate dihydrate or DCPD $\left(\mathrm{CaHPO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$. Gypsum and DCPD have almost the same molecular weight and density; moreover, they share the same monoclinic crystal lattice structure, which will facilitate the formation of a solid solution of both crystals. Fröchen and Becker ${ }^{(3)}$ confirmed the existence of the DCPD-Gypsum solid solution in 1959. This lattice loss is thermodynamically controlled and the controlling variables will be investigated to determine their effect on that loss.

1.3 Thermodynamic Model of Phosphate Lattice Loss

Thermodynamics can not yield any information about the intermediate states of a given reacting system. These intermediate states are the subject matter of chemical kinetics, which studies reaction rates and mechanisms. Chemical kinetics will predict what chemicals are present while thermodynamics will predict the limits of distribution of those chemicals in the different phases ${ }^{(4)}$.

The objective of this study is to produce a thermodynamic model that will predict the limits of distribution of phosphates between the liquid and the solid phases in the reactor used to extract phosphoric acid from phosphate rock. Different electrolyte activity coefficient models will be employed alternately to complete the model and to carry out different simulations using several inputs of temperatures and liquid phase sulfuric acid contents to study their effect on the distribution of phosphates. The results will then be compared to other literature data to validate the model and assess its accuracy.

CHAPTER 2. THERMODYNAMICS OF ELECTROLYTE SOLUTIONS

2.1 Ionic Equilibrium

It is generally more convenient in aqueous solution thermodynamics to describe the chemical potential of a species i in terms of its activity, a_{i}. G. N. Lewis ${ }^{(5)}$ defined the chemical potential of species i in terms of its activity as
$\mu_{i}(T)=\mu_{i}^{\circ}(T)+R T \ln \left(a_{i}\right)$
A criterion for any given reaction occurring at equilibrium is the minimization of the stoichiometric sum of the chemical potential of the reacting species. This can be represented in a generalized form as

$$
\begin{equation*}
\sum_{i} v_{i} \mu_{i}(T)=0 \tag{2}
\end{equation*}
$$

By substituting (1) into (2)

$$
\begin{equation*}
\sum_{i} v_{i} \mu_{i}^{\circ}(T)+\sum_{i} v_{i} R T \ln \left(a_{i}\right)=0 \tag{3}
\end{equation*}
$$

Further simplification yields
$\sum_{i} v_{i} \mu_{i}^{\circ}(T)+R T \sum_{i} \ln \left(a_{i}\right)^{v_{i}}=0$
But $\Sigma_{i} \ln \left(a_{i}\right)^{\prime}$ is the same as $\ln \Pi_{i}\left(a_{i}\right)^{v}$. Substituting

$$
\begin{equation*}
\sum_{i} v_{i} \mu_{i}^{\circ}(T)+R T \ln \prod_{i}\left(a_{i}\right)^{v_{i}}=0 \tag{5}
\end{equation*}
$$

Solving for $\Pi_{i}\left(a_{i}\right)^{v}$

$$
\begin{equation*}
\prod_{i}\left(a_{i}\right)^{v_{i}}=\exp \left(\frac{-\sum_{i} v_{i} \mu_{i}^{\circ}(T)}{R T}\right) \tag{6}
\end{equation*}
$$

The thermodynamic equilibrium constant for a specific reaction is defined as
$K=\exp \left(\frac{-\sum_{i} v_{i} G_{i}^{\circ}(T)}{R T}\right)$
The partial molar Gibbs free energy is defined as the reference state chemical potential. Using this definition, Equation (6) and Equation (7) can be equated and the thermodynamic equilibrium constant becomes
$K=\prod_{i}\left(a_{i}\right)^{v_{i}}=\exp \left(\frac{-\sum_{i} v_{i} G_{i}^{\circ}(T)}{R T}\right)$
Values of the partial molar Gibbs free energy for different chemicals are available in the literature as tabulations of the standard Gibbs free energy of formation.

To study the temperature effect on the equilibrium constant, Equation (8) is rewritten to simplify its differentiation

$$
\begin{equation*}
\ln K=\frac{-\sum_{i} v_{i} G_{i}^{\circ}(T)}{R T} \tag{9}
\end{equation*}
$$

Differentiating

$$
\begin{equation*}
R \frac{d \ln K}{d T}=\frac{d\left(\sum_{i} v_{i} G_{i}^{\circ}(T) / T\right)}{d T} \tag{10}
\end{equation*}
$$

By definition
$d G=\frac{\partial G}{\partial T} d T+\frac{\partial G}{\partial P} d P+\frac{\partial G}{\partial n_{i}} d n_{i}$
At constant pressure and composition
$\frac{\partial}{\partial T}\left(\frac{\sum_{i} v_{i} G_{i}^{\circ}(T)}{T}\right)=\frac{d}{d T}\left(\frac{\sum_{i} v_{i} G_{i}^{\circ}(T)}{T}\right)$

The Gibbs-Helmholtz relationship ${ }^{(5)}$ is used frequently to show the temperature dependencies of various derived properties. It is given by
$\left(\frac{\partial G / T}{\partial T}\right)_{P}=\frac{-H}{T^{2}}$
Using Equations (12) and (13), Equation (10) can be restated as
$R \frac{d \ln K}{d T}=\frac{\sum_{i} v_{i} H_{i}(T)}{T^{2}}$
This is known as the Van't Hoff Equation ${ }^{(6)}$. The expression $\Sigma_{i} v_{i} H_{i}(T)$ can be written as a function of temperature in terms of the heat capacity of the reacting species
$\sum_{i} v_{i} H_{i}(T)=\sum_{i} v_{i} H_{i}^{\mathrm{o}}\left(T^{\mathrm{o}}\right)+\int_{T^{\mathrm{o}}}^{T}\left(\sum_{i} v_{i} C p_{i}(T)\right) d T$
Values of $H_{i}^{\circ}\left(T^{\circ}\right)$ and $C p_{i}{ }^{\circ}\left(T^{\circ}\right)$ for different chemicals are available in the literature as tabulations of the standard Enthalpy of formation and the standard heat capacity. Assuming a constant $\Sigma_{i} v_{i} C p_{i}(T)$ value, which equals $\Sigma_{i} v_{i} C p_{i}\left(T^{\circ}\right)$
$\sum_{i} v_{i} H_{i}(T)=\sum_{i} v_{i} H_{i}^{\mathrm{o}}\left(T^{\mathrm{o}}\right)+\left(T-T^{\circ}\right) \sum_{i} v_{i} C p_{i}^{\circ}\left(T^{\circ}\right)$
Substituting Equation (16) in (14)
$R \frac{d \ln K}{d T}=\frac{\sum_{i} v_{i} H_{i}^{\circ}\left(T^{\circ}\right)}{T^{2}}+\sum_{i} v_{i} C p_{i}^{\circ}\left(T^{\circ}\right)\left(\frac{1}{T}-\frac{T^{\circ}}{T^{2}}\right)$
Integrating between T° and T gives
$\ln K=\ln K^{\circ}-\frac{\sum_{i} v_{i} H_{i}^{\circ}\left(T^{\circ}\right)}{R}\left(\frac{1}{T}-\frac{1}{T^{\circ}}\right)-\frac{\sum_{i} v_{i} C p_{i}^{\circ}\left(T^{\circ}\right)}{R}\left(\ln \frac{T^{\circ}}{T}-\frac{T^{\circ}}{T}+1\right)$
Where K° is given by
$\ln K^{\circ}=\frac{-\sum_{i} v_{i} G_{i}^{\circ}\left(T^{\circ}\right)}{R T^{\circ}}$

The reference state thermodynamic functions of the chemical reactions, $\Delta C p^{\circ}$, ΔH°, and ΔG°, are defined in terms of the reference state thermodynamic properties of the reacting species as follows

$$
\begin{equation*}
\Delta C p^{\circ}=\sum_{i} v_{i} C p_{i}^{\circ} \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\Delta H^{\circ}=\sum_{i} v_{i} H_{i}^{\circ} \tag{21}
\end{equation*}
$$

$\Delta G^{\circ}=\sum_{i} v_{i} G_{i}^{\circ}$
Equations (18) and (19) can now be rewritten using newly defined reference state thermodynamic functions of the chemical reactions as

$$
\begin{equation*}
\ln K=\ln K^{\circ}-\frac{\Delta H^{\circ}}{R}\left(\frac{1}{T}-\frac{1}{T^{\circ}}\right)-\frac{\Delta C p^{\circ}}{R}\left(\ln \frac{T^{\circ}}{T}-\frac{T^{\circ}}{T}+1\right) \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\ln K^{\circ}=\frac{-\Delta G^{\circ}}{R T^{\circ}} \tag{24}
\end{equation*}
$$

Equations (23) and (24) can be used to obtain the equilibrium constant of a chemical reaction as a function of temperature given the reference state thermodynamic properties of the reacting species.

A more accurate version of Equation (23) can be obtained by substituting a temperature-dependent heat capacity function, i.e. $C p_{i}(T)$, in Equation (15), integrating it, and then proceeding with the same steps to get to Equation (23). Another alternative can be used to obtain a more accurate version of Equation (23) if experimental data of the equilibrium constant at various temperatures is available. $\Delta C p^{\circ}$ and ΔH° can be used as adjustable parameters to fit the data to Equation (23) by means of non-linear regression. This will compensate for the temperature-independent heat capacity assumption used to develop that equation, which will result in better estimates of the equilibrium constants.

2.2 Ionic Activity

In 1887, Svanté Arrhenius ${ }^{(5)}$ presented his theory of electrolytic dissociation of solute into negatively and positively charged ions. He assumed that the distribution and motion of ions in a solution is independent of the ionic interaction forces. Experimental work showed that Arrhenius' theory holds only for weak electrolytes, and that electrostatic forces between ions must be considered especially for strong electrolytes.

In 1923, Peter Debye and Erich Hückel ${ }^{(5)}$ presented their theory of interionic attractions in electrolyte solutions. As electrolyte dissociation in solutions increases, ion concentration also increases resulting in smaller distance and greater electrostatic force between ions. The strength of this coulombic interaction between ions must therefore be considered in modeling thermodynamic equilibrium of electrolyte systems.

Ionic strength is a measure of the average electrostatic interactions among ions in an electrolyte. Lewis and Randall ${ }^{(1)}$ defined the ionic strength as one-half the sum of the terms obtained by multiplying the molality of each ion by its valence squared

$$
\begin{equation*}
I=\frac{1}{2} \sum_{i} m_{i} z_{i}^{2} \tag{25}
\end{equation*}
$$

As previously mentioned, the chemical potential of species i in terms of its activity is
$\mu_{i}(T)=\mu_{i}^{\circ}(T)+R T \ln \left(a_{i}\right)$
Where the standard state is a hypothetical solution with molality m for which the activity coefficient is unity. The activity is related to molality by
$a_{i}=\gamma_{i} m_{i}$
Note that the activity can be related to other concentration scales, such as molarity and mole fraction scales. The units of activity are the same as those of the chosen concentration scale and the activity coefficient remains dimensionless always.

2.3 Ionic Activity Coefficient Models

Activity coefficient models for non-electrolyte binary and multi-component systems are available in the literature as Excess Gibbs Energy models. Different models handle different systems and one should be very careful when choosing a model to work with. Most of these models contain adjustable parameters that can be manipulated.

Debye-Hückel theory that was presented over seventy years ago provides the cornerstone for most models of electrolyte solutions. Classical Electrostatics and statistical mechanics are used to linearize the Poisson-Boltzmann distribution of charges, which will then approximate the ion-ion interaction energy allowing for the derivation of an expression for the mean ionic activity coefficient. Below are some ionic activity coefficient models for aqueous multi-component electrolyte solutions.

1. Debye-Hückel model ${ }^{(7)}$

$$
\begin{equation*}
-\log \gamma_{i}=\frac{A z_{i}^{2} \sqrt{I}}{1+\beta r_{i} \sqrt{I}} \tag{27}
\end{equation*}
$$

Approximated values of r_{i}, the ion size parameter or the effective ionic radius, at $25{ }^{\circ} \mathrm{C}$ are given in Table $1^{(7)} . A$ and β are temperature-dependent parameters and can be estimated from the following polynomials that were obtained by fitting literature data found at temperatures between 0 and $100^{\circ} \mathrm{C}^{(7)}$

$$
\begin{align*}
& A=(0.69725708)-(0.0021544338) T+(5.134952 E-6) T^{2} \tag{28}\\
& \beta=(0.34905962)-(0.00032917649) T+(8.8002615 E-7) T^{2} \tag{29}
\end{align*}
$$

The Debye-Hückel model is satisfactory for weak electrolyte solutions of ionic strength of 0.1 molal or less but it gets progressively worse as ionic strength increases to practical engineering levels.

Table 1. Approximate Effective Ionic Radii in Aqueous Solutions at $25^{\circ} \mathrm{C}$

$r(A)$	Inorganic Ions	r (A)	Organic Ions
2.5	$\mathrm{Rb}^{+}, \mathrm{Cs}^{+}, \mathrm{NH}_{4}^{+}, \mathrm{Tl}^{+}, \mathrm{Ag}^{+}$	3.5	$\begin{aligned} & \mathrm{HCOO}^{-}, \mathrm{H}_{2} \mathrm{Cit}, \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+} \text {, } \\ & \left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}^{+} \end{aligned}$
3	$\mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{CN}^{-}, \mathrm{NO}_{2}^{-}, \mathrm{NO}_{3}^{-}$	4	$\begin{aligned} & \mathrm{H}_{3} \mathrm{~N}^{+} \mathrm{CH}_{2} \mathrm{COOH},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}, \\ & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+} \end{aligned}$
3.5	$\mathrm{OH}, \mathrm{F}^{-}, \mathrm{SCN}^{-}, \mathrm{OCN}, \mathrm{HS}^{-}, \mathrm{ClO}_{3}^{-}$, $\mathrm{ClO}_{4}^{-}, \mathrm{BrO}_{3}^{-}, \mathrm{IO}_{4}^{-}, \mathrm{MnO}_{4}^{-}$	4.5	$\mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{ClCH}_{2} \mathrm{COO}^{-}$, $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}^{+},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right){ }_{2} \mathrm{NH}_{2}{ }^{+}$, $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COO}^{-}$, oxalate ${ }^{2-}$, HCit^{2-}
4	$\mathrm{Na}^{+}, \mathrm{CdCl}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{ClO}_{2}^{-}, \mathrm{IO}_{3}^{-}$, $\mathrm{HCO}_{3}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HSO}_{3}^{-}, \mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$, $\mathrm{SO}_{4}{ }^{2-} \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}, \mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}, \mathrm{SeO}_{4}{ }^{2-}$ $\mathrm{CrO}_{4}{ }^{2-}, \mathrm{HPO}_{4}{ }^{2-}, \mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}$, $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}, \mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}{ }^{3+}$, $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}{ }^{3+}, \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{H}_{2} \mathrm{O}^{3+}$	5	$\mathrm{Cl}_{2} \mathrm{CHCOO}^{-}, \mathrm{Cl}_{3} \mathrm{COO}^{-}$, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NH}^{+}, \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{3}{ }^{+}, \mathrm{Cit}^{3-}$, succinate ${ }^{2-}$, malonate ${ }^{2-}$, tartrate ${ }^{2-}$
4.5	$\begin{aligned} & \mathrm{Pb}^{+}, \mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}{ }^{2-}, \mathrm{MoO}_{4}^{2-}, \\ & \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{2+}, \mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}^{2-} \end{aligned}$	6	benzoate-, hydroxybenzoate", chlorobenzoate-, phenylacetate", vinylacetate ${ }^{-},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCOO}^{-}$, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{~N}^{+},\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} \mathrm{NH}_{2}{ }^{+}$, phthalate ${ }^{2-}$, glutarate ${ }^{2-}$, adipate ${ }^{2-}$
5	$\begin{aligned} & \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Ra}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Hg}^{2+}, \mathrm{S}^{2-} \\ & \mathrm{S}_{2} \mathrm{O}_{4}^{2-}, \mathrm{WO}_{4}^{2-}, \mathrm{Fe}(\mathrm{CN})_{6}^{4-} \end{aligned}$	7	trinitrophenolate, $\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{3} \mathrm{NH}^{+}$, methoxybenzoate, pimelate ${ }^{2-}$, suberate ${ }^{2-}$, Congo red anion ${ }^{2-}$
6	$\begin{aligned} & \mathrm{Li}^{++} \mathrm{Ca}^{2+} \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Sn}^{2+}, \mathrm{Mn}^{2+}, \\ & \mathrm{Fe}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Co}^{2+}, \mathrm{Co}(\mathrm{en})_{3}{ }^{3+}, \\ & \mathrm{Co}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)(\mathrm{CN})_{5}^{4-} \end{aligned}$	8	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CHCOO}^{-},\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{4} \mathrm{~N}^{+}$
8	$\mathrm{Mg}^{2+}, \mathrm{Be}^{2+}$		
9	$\begin{aligned} & \mathrm{H}^{+}, \mathrm{Al}^{3+}, \mathrm{Fe}^{3+}, \mathrm{Cr}^{3+}, \mathrm{Sc}^{3+}, \mathrm{Y}^{3+}, \\ & \mathrm{La}^{3+}, \mathrm{In}^{3^{+}}, \mathrm{Ce}^{3+}, \mathrm{Pr}^{3+}, \mathrm{Nd}^{3+}, \mathrm{Sm}^{3+}, \\ & \mathrm{Co}\left(\mathrm{SO}_{3}\right)_{2}(\mathrm{CN})_{4}^{5-} \end{aligned}$		
11	$\mathrm{Th}^{4+}, \mathrm{Zr}^{4+}, \mathrm{Ce}^{4+}, \mathrm{Sn}^{4+}$		

Figure 3. Debye-Hückel Parameter A as a Function of Temperature

Figure 4. Debye-Hückel Parameter β as a Function of Temperature
2. Robinson-Guggenheim-Bates model ${ }^{(7)}$
$-\log \gamma_{i}=\left(\frac{0.511 I}{1+1.5 I}-0.2 I\right) z_{i}^{2}$
The model is essentially a modified version of the Debye-Hückel model. The effective ionic radius is assumed to be $4.6 \AA$. This model is relatively successful for solutions up to 1 molal ionic strength and it is more convenient to implement than the Debye-Hückel model.
3. Bromley's model ${ }^{(5)}$
$-\log \gamma_{i}=\frac{A z_{i}^{2} \sqrt{I}}{1+\sqrt{I}}-F_{i}$
A is the Debye-Hückel parameter defined in Equation (28) and F_{i} is a summation of interaction parameters

$$
\begin{equation*}
F_{i}=\sum_{j} B_{i j} Z_{i j}^{2} m_{j} \tag{32}
\end{equation*}
$$

Where j can either indicate all anions in the solution if i were a cation, or all cations in the solution if i were an anion. $Z_{i j}$ and $B_{i j}$ are defined by
$Z_{i j}=\frac{z_{i}+z_{j}}{2}$
$B_{i j}=\frac{(0.06+0.6 B)\left|z_{i} z_{j}\right|}{\left(1+\frac{1.5 I}{\left|z_{i} z_{j}\right|}\right)^{2}}+B$
B is Bromley's parameter defined as $B=B^{+}+B^{-}+\delta^{+} \delta^{-}$

Values for $B^{+}, B^{-}, \delta^{+}, \delta$ are available in Table $2{ }^{(5)}$. Bromley's model gives adequate results for strong electrolyte solutions up to ionic strengths of 6 molal.

Table 2. Bromley's Parameters for Different Electrolytes at $25^{\circ} \mathrm{C}$

Cation	$B+$	$\delta+$	Anion	B -	δ
H^{+}	0.0875	0.103	F	0.0295	-0.930
Li^{+}	0.0691	0.138	Cl^{-}	0.0643	-0.067
Na^{+}	0.0000	0.028	Br^{-}	0.0741	0.064
K^{+}	-0.0452	-0.079	I	0.0890	0.196
Rb^{+}	-0.0537	-0.100	$\mathrm{ClO}_{3}{ }^{-}$	0.0050	0.450
Cs^{+}	-0.0710	-0.138	ClO_{4}^{-}	0.0020	0.790
NH_{4}^{+}	-0.0420	-0.020	$\mathrm{BrO}_{3}{ }^{-}$	-0.0320	0.140
Tl^{+}	-0.1350	-0.020	$\mathrm{IO}_{3}{ }^{-}$	-0.0400	0.000
Ag^{+}	-0.0580	0.000	$\mathrm{NO}_{3}{ }^{-}$	-0.0250	0.270
Be^{2+}	0.1000	0.200	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	-0.0520	0.200
Mg^{2+}	0.0570	0.157	$\mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{-}$	-0.0300	0.050
Ca^{2+}	0.0374	0.119	CNS ${ }^{-}$	0.0710	0.160
Sr^{2+}	0.0245	0.110	OH	0.0760	-1.000
Ba^{2+}	0.0022	0.098	Formate	0.0720	-0.700
Mn^{2+}	0.0370	0.210	Acetate	0.1040	-0.730
Fe^{2+}	0.0460	0.210	Propionate	0.1520	-0.700
Co^{2+}	0.0490	0.210	Butyrate	0.1670	-0.700
Ni^{2+}	0.0540	0.210	Valerate	0.1420	-0.700
Cu^{2+}	0.0220	0.300	Caproate	0.0680	-0.700
Zn^{2+}	0.1010	0.090	Heptylate	-0.0270	-0.700
Cd^{2+}	0.0720	0.090	Caprylate	-0.1220	-0.700
Pb^{2+}	-0.1040	0.250	Pelargonate	-0.2840	-0.700
$\mathrm{UO}_{2}{ }^{2+}$	0.0790	0.190	Caprate	-0.4590	-0.700
Cr^{3+}	0.0660	0.150	H Malonate	0.0050	-0.220
Al^{3+}	0.0520	0.120	H Succinate	0.0210	-0.270
Sc^{3+}	0.0460	0.200	H Adipate	0.0530	-0.260
Y^{3+}	0.0370	0.200	Toluate	-0.0220	-0.160
La^{3+}	0.0360	0.270	$\mathrm{CrO}_{4}{ }^{2-}$	0.0190	-0.330
Ce^{3+}	0.0350	0.270	$\mathrm{SO}_{4}{ }^{2-}$	0.0000	-0.400
Pr^{3+}	0.0340	0.270	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$	0.0190	-0.700
Nd^{3+}	0.0350	0.270	$\mathrm{HPO}_{4}{ }^{2-}$	-0.0100	-0.570
Sm^{3+}	0.0390	0.270	$\mathrm{HAsO}_{4}{ }^{2-}$	0.0210	-0.670
Eu^{3+}	0.0410	0.270	$\mathrm{CO}_{3}{ }^{\text {- }}$	0.0280	-0.670
Ga^{3+}	0.0000	0.200	Fumarate	0.0560	-0.700
Co(en) ${ }^{3+}$	-0.0890	0.000	Maleate	0.0170	-0.700
Th^{++}	0.0620	0.190	$\mathrm{PO}_{4}{ }^{3-}$	0.0240	-0.700
			$\mathrm{AsO}_{4}{ }^{3-}$	0.0380	-0.780
			$\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$	0.0650	0.000
			$\mathrm{Mo}(\mathrm{CN})_{6}{ }^{\text {- }}$	0.0560	0.000

Many other ionic activity coefficient models for electrolyte solutions are also available in the literature such as Guggenheim's Equation ${ }^{(5)}$, Davies' Equation ${ }^{(5)}$, Meissner's Equation ${ }^{(5)}$, Pitzer's Equation ${ }^{(5)}$, Chen's Equation ${ }^{(5)}$, and National Bureau of Standards' Parametric Equations ${ }^{(5)}$. Most of these models predict the mean ionic activity coefficient of single and multi-component electrolyte solutions but not the ionic activity coefficient of individual ions.

2.4 Solid-Liquid Equilibria in Aqueous Solutions

Electrolytes dissolve in some solvents until they form a saturated solution of their constituent ions in equilibrium with the undissolved electrolytes. In a saturated solution, electrolytes continue to dissolve and an equal amount of ions in the solution keep combining to precipitate as a solid. Simple dissociation reactions can be represented as

$$
C_{m} A_{n}(s) \underset{\text { Precipitation }}{\text { Dissolution }} m C^{c+}(a q)+n A^{a-}(a q)
$$

The equilibrium constant for a dissolution reaction is called the solubility product, and is given by Equation (8). The solubility product of the given arbitrary dissolution reaction is

$$
\begin{equation*}
K s p=\prod_{i}\left(a_{i}\right)^{v_{i}}=\frac{\left(a_{C}\right)^{m}\left(a_{A}\right)^{n}}{\left(a_{C_{m} A_{n}}\right)} \tag{36}
\end{equation*}
$$

The activity of the undissolved electrolytes or any other solid is obtained by

$$
\begin{equation*}
a_{i}=\gamma_{i} x_{i} \tag{37}
\end{equation*}
$$

For slightly soluble electrolytes, deviation from ideality is minimum and the value of the activity coefficient approaches unity. Equation (36) can be rewritten as

$$
\begin{equation*}
K s p=\frac{\left(a_{C}\right)^{m}\left(a_{A}\right)^{n}}{\left(x_{C_{m} A_{n}}\right)} \tag{38}
\end{equation*}
$$

Notice that Ksp at the standard conditions can be calculated by using the definition of the equilibrium constant given by Equation (7) or by using Van't Hoff's relationship ${ }^{(6)}$ given by Equation (14).

2.5 Vapor-Liquid Equilibria in Aqueous Solutions

Some gases dissolve in electrolyte solutions and become in equilibrium with the undissolved gas. As before, this can be represented by

$$
\begin{equation*}
K a q=\frac{a_{i}^{L}}{a_{i}^{V}} \tag{39}
\end{equation*}
$$

a_{i}^{L} can be obtained using Equation (26), where a_{i}^{V} is related to the partial pressure of i by

$$
\begin{equation*}
a_{i}^{V}=f_{i} P_{i} \tag{40}
\end{equation*}
$$

Notice that $K a q$ at the standard conditions can be calculated by using the definition of the equilibrium constant given by Equation (7) or by using Van't Hoff's relationship ${ }^{(6)}$ given by Equation (14).

CHAPTER 3. THERMODYNAMIC MODEL OF PHOSPHATE LATTICE LOSS

3.1 Model Description

The large reactor used to extract phosphoric acid from phosphate rock in the dihydrate process contains the three distinct phases. The vapor phase can be safely considered an inert phase due to the low volatility of the reacting species and the small solubility of gases in the condensed phases. The liquid phase is mainly water along with phosphoric acid and small amounts of sulfuric acid. The solid phase is primarily gypsum with small quantity of phosphate present as dicalcium phosphate dihydrate or DCPD.

In a thermodynamic analysis, only major components and major reactions need to be considered. Trace components and reactions affect chemical kinetics but not to a great deal the thermodynamic equilibrium. The thermodynamic model of phosphate lattice loss mentioned earlier will be developed based upon the following equilibrium reactions

$$
\begin{aligned}
& \mathrm{HSO}_{4}^{-} \longleftrightarrow \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-} \\
& \mathrm{H}_{3} \mathrm{PO}_{4} \longleftrightarrow \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \\
& \mathrm{H}_{2} \mathrm{PO}_{4}^{-} \longleftrightarrow \mathrm{H}^{+}+\mathrm{HPO}_{4}^{2-} \\
& \mathrm{CaHPO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{Ca}^{2+}+\mathrm{HPO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{Ca}^{2+}+\mathrm{SO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Very slow chemical reactions, such as the dissolution of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{HPO}_{4}{ }^{2-}$, and very fast chemical reactions, such as the dissolution of $\mathrm{H}_{2} \mathrm{SO}_{4}$, do not disturb the equilibrium and thus will not be considered in the model.

3.2 Model Simulation

A thermodynamic model will be developed to predict the limits of distribution of phosphates between the liquid and the solid phases in the reactor used to extract phosphoric acid from phosphate rock. To track down the degrees of freedom, each equation in the model will be followed by a set of two numbers, a Roman number and an Arabic number, that will work as a counter. The first number will count the number of equations while the second number will count the number of unknowns and the difference between the two numbers is the degree of freedom of the model.

Defining the liquid phase properties: total phosphate molality (TPM) and total sulfate molality (TSM)

$$
\begin{equation*}
T P M=m_{H_{3} \mathrm{PO}_{4}}+m_{H_{2} \mathrm{PO}_{4}^{-}}+m_{\mathrm{HPO}_{4}^{2-}} \tag{i,4}
\end{equation*}
$$

$T S M=m_{\mathrm{HSO}_{4}^{-}}+m_{\text {SO }_{4}^{2-}}$
The total phosphates content of the liquid phase is a known parameter and can be expressed as percent $\mathrm{P}_{2} \mathrm{O}_{5}$ equivalence by mass $\left(\mathrm{Kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{Kg}\right.$ Solution)
$\% P_{2} O_{5}=\left(T P M \times \Theta_{P_{2} \mathrm{O}_{\mathrm{s}}} \times M W_{\mathrm{P}_{2} \mathrm{O}_{\mathrm{s}}} \times \Phi_{\mathrm{H}_{2} \mathrm{O}}\right) \times 100$
The effective sulfuric acid content of the liquid phase is a manipulated parameter and can be expressed as percent $\mathrm{H}_{2} \mathrm{SO}_{4}$ equivalence by mass $\left(\mathrm{Kg} \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{Kg}\right.$ Solution $)$

$$
\begin{equation*}
\% \mathrm{H}_{2} \mathrm{SO}_{4}=\left(T \mathrm{SM} \times \Theta_{\mathrm{H}_{2} \mathrm{SO}_{4}} \times M W_{\mathrm{H}_{2} \mathrm{SO}_{4}} \times \Phi_{\mathrm{H}_{2} \mathrm{O}}\right) \times 100 \tag{iv,8}
\end{equation*}
$$

$\% \mathrm{P}_{2} \mathrm{O}_{5}$ is taken to be 28% mass, while $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ will be varied to study its effect on the distribution of phosphates. The variable Θ_{i} indicates the moles of species i equivalence per 1 mole of its prospective compounds; therefore, $\Theta_{P 2 O S}$ is equal to $1 / 2$ and $\Theta_{\mathrm{H} 2 \mathrm{SO}}$ is equal to 1.

The variable $\Phi_{H 2 O}$ is the mass fraction of water in the liquid
$\Phi_{\mathrm{H}_{2} \mathrm{O}}=M_{\mathrm{H}_{2} \mathrm{O}} / M_{\text {Total }}$
The variable M_{i} represents the total mass of i in the liquid per total mass of water in the liquid. This corresponds to a value of unity for $M_{H 2 O}$ and a value that is greater than unity for $M_{\text {Total }}$.

The molality of water is a fixed value and will be used later in the model. It is defined as the inverse of the molecular weight of water

$$
\begin{equation*}
m_{\mathrm{H}_{2} \mathrm{O}}=1 / M W_{\mathrm{H}_{2} \mathrm{O}} \tag{vi,10}
\end{equation*}
$$

Conducting a total mass balance in the liquid phase for total phosphate molality and total sulfate molality
$M_{T P M}=\left(m_{H_{3} \mathrm{PO}_{4}} \times M W_{H_{3} \mathrm{PO}_{4}}\right)+\left(m_{H_{2} \mathrm{PO}_{4}^{-}} \times M W_{H_{2} \mathrm{PO}_{4}^{-}}\right)+\left(m_{\mathrm{HPO}_{4}^{2-}} \times M W_{\mathrm{HPO}_{4}^{2-}}\right)$
$M_{T S M}=\left(m_{H S O_{4}^{-}} \times M W_{H S O_{4}^{-}}\right)+\left(m_{S O_{4}^{2-}} \times M W_{S O_{4}^{-}}\right)$
Total mass balance for the remaining species, e. g. Ca^{2+} and H^{+}, in the liquid phase

$$
\begin{equation*}
M_{\text {Other }}=\left(m_{H^{+}} \times M W_{H^{+}}\right)+\left(m_{\mathrm{Ca}^{2+}} \times M W_{\mathrm{Ca}^{2+}}\right) \tag{ix,15}
\end{equation*}
$$

An overall mass balance can be written as
$M_{\text {Total }}=M_{H_{2} \mathrm{O}}+M_{\text {TPM }}+M_{\text {TSM }}+M_{\text {Other }}$
A charge balance is needed to satisfy the electroneutrality condition

$$
\begin{equation*}
z_{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}} m_{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}}+z_{\mathrm{HPO}_{4}^{2-}} m_{\mathrm{HPO}_{4}^{2-}}+z_{\mathrm{HSO}_{4}^{-}} m_{\mathrm{HSO}_{4}^{-}}+z_{\mathrm{SO}_{4}^{2}} m_{\mathrm{SO}_{4}^{2-}}+z_{\mathrm{H}^{+}} m_{\mathrm{H}^{+}}+z_{\mathrm{Ca}^{2+}} m_{\mathrm{Ca}^{2+}}=0 \tag{xi,15}
\end{equation*}
$$

The liquid phase acid equilibria are included in the model by the equilibrium relations. The equilibrium relations for the dissolution of $\mathrm{HSO}_{4}^{-}, \mathrm{H}_{3} \mathrm{PO}_{4}$, and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$are expressed in terms of species activities as follows

$$
\begin{align*}
& K_{\mathrm{HSO}_{4}^{-}}=\frac{a_{\mathrm{SO}_{4}^{2-}} \times a_{H^{+}}}{a_{\mathrm{HSO}_{4}^{-}}} \tag{xii,19}\\
& K_{\mathrm{H}_{3} \mathrm{PO}_{4}}=\frac{a_{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}} \times a_{H^{+}}}{a_{\mathrm{H}_{3} \mathrm{PO}_{4}}} \tag{xiii,22}\\
& K_{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}}=\frac{a_{\mathrm{HPO}_{4}^{2-}} \times a_{H^{+}}}{a_{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}}} \tag{xiv,24}
\end{align*}
$$

The solid-liquid equilibria are included in the model by the solubility product relations. The solubility product relations for gypsum and DCPD are
$K s p_{\text {Gypsum }}=\frac{a_{\text {So }_{4}^{--}} \times a_{\mathrm{Ca}^{2+}} \times a_{\mathrm{H}_{2} \mathrm{O}}{ }^{2}}{x_{\text {Gypsum }}}$
$K s p_{D C P D}=\frac{a_{H P O_{4}^{2-}} \times a_{C a^{2+}} \times a_{H_{2} O^{2}}{ }^{2}}{x_{D C P D}}$
Neglecting the presence of impurities and assuming that the solid phase consists of only gypsum and DCPD
$x_{\text {Gypsum }}+x_{\text {DCPD }}=1$
Mass fraction of DCPD in the solid solution can be obtained by
$\omega_{D C P D}=\frac{\left(x_{\text {Gypsum }} \times M W_{\text {Gypsum }}\right)}{\left(x_{\text {Gypsum }} \times M W_{\text {Gypsum }}+x_{D C P D} \times M W_{D C P D}\right)}$
The phosphate lattice loss, $\%_{2} \mathrm{P}_{5} \mathrm{O}^{(S)}$, can be expressed as percent $\mathrm{P}_{2} \mathrm{O}_{5}$ equivalence by mass ($\mathrm{Kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{Kg}$ Solid)
$\% P_{2} O_{5}{ }^{(S)}=\left(\omega_{D C P D} \times\left(\frac{1}{M W_{D C P D}}\right) \times \Psi_{P_{2} O_{5}} \times M W_{P_{2} O_{5}}\right) \times 100$
The variable $\Psi_{P 205}$ is defined in a similar way to the variable $\Theta_{P 2 O 5}$. It indicates the moles of $\mathrm{P}_{2} \mathrm{O}_{5}$ equivalence per 1 mole of DCPD; therefore, $\Psi_{P 2 O S}$ is equal to $1 / 2$.

Temperature-dependent equilibrium constants of the model reactions can be captured using Equation (23) developed in Chapter 2
$\ln K_{H S O_{4}^{-}}=\ln K_{H S O_{4}^{-}}^{\circ}-\frac{\Delta H_{H S O_{4}^{-}}^{\circ}}{R}\left(\frac{1}{T}-\frac{1}{T^{\circ}}\right)-\frac{\Delta C p_{H S O_{4}^{-}}^{\circ}}{R}\left(\ln \frac{T^{\circ}}{T}-\frac{T^{\circ}}{T}+1\right)$
$\ln K_{H_{3} P O_{4}}=\ln K_{H_{3} P O_{4}}^{\circ}-\frac{\Delta H_{H_{3} P O_{4}}^{\circ}}{R}\left(\frac{1}{T}-\frac{1}{T^{\circ}}\right)-\frac{\Delta C p_{H_{3} P O_{4}}^{\circ}}{R}\left(\ln \frac{T^{\circ}}{T}-\frac{T^{\circ}}{T}+1\right)$
$\ln K_{H_{2} P_{4}^{\circ}}=\ln K_{H_{2} P_{4}^{-}}^{\circ}-\frac{\Delta H_{H_{2} P_{4}^{-}}^{\circ}}{R}\left(\frac{1}{T}-\frac{1}{T^{\circ}}\right)-\frac{\Delta C p_{H_{2} \mathrm{PO}_{4}^{-}}^{\circ}}{R}\left(\ln \frac{T^{\circ}}{T}-\frac{T^{\circ}}{T}+1\right) \quad$ (xxii, 41)
$\ln K_{G y p s u m}=\ln K_{G y p s u m}^{\circ}-\frac{\Delta H_{G p p s u m}^{\circ}}{R}\left(\frac{1}{T}-\frac{1}{T^{\circ}}\right)-\frac{\Delta C p_{\text {Gypsum }}^{\circ}}{R}\left(\ln \frac{T^{\circ}}{T}-\frac{T^{\circ}}{T}+1\right) \quad$ (xxiii, 44)
$\ln K_{D C P D}=\ln K_{D C P D}^{\circ}-\frac{\Delta H_{D C P D}^{\circ}}{R}\left(\frac{1}{T}-\frac{1}{T^{\circ}}\right)-\frac{\Delta C p_{D C P D}^{\circ}}{R}\left(\ln \frac{T^{\circ}}{T}-\frac{T^{\circ}}{T}+1\right)$

Temperature of the medium is a manipulated parameter that will be varied to study its effect on the distribution of phosphates. The reference state equilibrium constants can be obtained using Equation (24) defined in Chapter 2

$$
\begin{equation*}
\ln K_{H S O_{4}^{-}}^{\circ}=\frac{-\Delta G_{H S O_{4}^{-}}^{\circ}}{R T^{\circ}} \tag{xxv,48}
\end{equation*}
$$

$\ln K_{H_{3} P O_{4}}^{\circ}=\frac{-\Delta G_{H_{3} P O_{4}}^{\circ}}{R T^{\circ}}$
$\ln K_{H_{2} \mathrm{PO}_{4}^{-}}^{\circ}=\frac{-\Delta G_{H_{2} \mathrm{PO}_{4}^{-}}^{\circ}}{R T^{\circ}}$
$\ln K_{\text {Gypsum }}^{\circ}=\frac{-\Delta G_{\text {Gypsum }}^{\circ}}{R T^{\circ}}$
$\ln K_{D C P D}^{\circ}=\frac{-\Delta G_{D C P D}^{\circ}}{R T^{\circ}}$

The reference state thermodynamic functions of the model reactions, $\Delta C p^{\circ}, \Delta H^{\circ}$, and ΔG°, can be easily computed using the reference state thermodynamic properties of the reacting species available in the literature. $\Delta C p^{\circ}$ expressions for this model are defined as follows

$$
\begin{align*}
& \Delta C p_{H_{S O}^{4}}^{\circ}=\sum_{i} v_{i} C p_{i}^{\circ}=C p_{S_{4}^{\circ-}}^{\circ}+C p_{H^{+}}^{\circ}-C p_{\mathrm{HSO}_{4}^{-}}^{\circ} \tag{xxx,52}\\
& \Delta C p_{H_{3} \mathrm{PO}_{4}}^{\circ}=\sum_{i} v_{i} C p_{i}^{\circ}=C p_{H_{2} P O_{4}^{-}}^{\circ}+C p_{H^{+}}^{\circ}-C p_{H_{3} P O_{4}}^{\circ} \tag{xxxi,52}\\
& \Delta C p_{H_{2} P O_{4}^{-}}^{\circ}=\sum_{i} v_{i} C p_{i}^{\circ}=C p_{H_{O_{4}^{2-}}^{\circ}}^{\circ}+C p_{H^{+}}^{\circ}-C p_{H_{2} P O_{4}^{-}}^{\circ} \tag{xxxii,52}\\
& \Delta C p_{\text {Gypsum }^{\circ}}^{\circ}=\sum_{i} v_{i} C p_{i}^{\circ}=C p_{C a^{2+}}^{\circ}+C p_{\text {SO }_{4}^{2-}}^{\circ}+2 \times C p_{H_{2} \mathrm{O}}^{\circ}-C p_{\text {Gypsum }^{\circ}}^{\circ} \tag{xxxiii,52}\\
& \Delta C p_{D C P D}^{\circ}=\sum_{i} v_{i} C p_{i}^{\circ}=C p_{C a^{2+}}^{\circ}+C p_{H P O_{4}^{2-}}^{\circ}+2 \times C p_{H_{2} \mathrm{O}}^{\circ}-C p_{D C P D}^{\circ} \tag{xxxiv,52}
\end{align*}
$$

Similarly, ΔH° expressions for this model are

$$
\begin{align*}
& \Delta H_{H S O_{4}^{-}}^{\circ}=\sum_{i} v_{i} H_{i}^{\circ}=H_{S O_{4}^{2-}}^{\circ}+H_{H^{+}}^{\circ}-H_{H S O_{4}^{-}}^{\circ} \tag{xxxv,52}\\
& \Delta H_{H_{3} P O_{4}}^{\circ}=\sum_{i} v_{i} H_{i}^{\circ}=H_{H_{2} P O_{4}^{-}}^{\circ}+H_{H^{+}}^{\circ}-H_{H_{3} P O_{4}}^{\circ} \tag{xxxvi,52}\\
& \Delta H_{H_{2} P O_{4}^{-}}^{\circ}=\sum_{i} v_{i} H_{i}^{\circ}=H_{H P O_{4}^{2-}}^{\circ}+H_{H^{+}}^{\circ}-H_{H_{2} P O_{4}^{-}}^{\circ} \tag{xxxvii,52}\\
& \Delta H_{G y p s u m}^{\circ}=\sum_{i} v_{i} H_{i}^{\circ}=H_{C a^{2+}}^{\circ}+H_{S O_{4}^{\circ-}}^{\circ}+2 \times H_{H_{2} O}^{\circ}-H_{G y y p u m}^{\circ} \tag{xxxviii,52}\\
& \Delta H_{D C P D}^{\circ}=\sum_{i} v_{i} H_{i}^{\circ}=H_{C a^{2+}}^{\circ}+H_{H P O_{4}^{2-}}^{\circ}+2 \times H_{H_{2} O}^{\circ}-H_{D C P D}^{\circ} \tag{xxxix,52}
\end{align*}
$$

If experimental data of the equilibrium constant at various temperatures is available, $\Delta C p^{\circ}$ and ΔH° can be used as adjustable parameters to fit the data to Equation (23) by means of non-linear regression. This will compensate for the temperatureindependent heat capacity assumption used to develop that equation, which will result in better estimates of the temperature-dependent equilibrium constants.

Likewise, ΔG° expressions for this model are

$$
\begin{align*}
& \Delta G_{H S O_{4}^{-}}^{\circ}=\sum_{i} v_{i} G_{i}^{\circ}=G_{S O_{4}^{2^{-}}}^{\circ}+G_{H^{+}}^{\circ}-G_{H S O_{4}^{-}}^{\circ} \tag{xxxx,52}\\
& \Delta G_{H_{3} P O_{4}}^{\circ}=\sum_{i} v_{i} G_{i}^{\circ}=G_{H_{2} P O_{4}^{-}}^{\circ}+G_{H^{+}}^{\circ}-G_{H_{3} P O_{4}}^{\circ} \tag{xxxxi,52}\\
& \Delta G_{H_{2} P O_{4}^{-}}^{\circ}=\sum_{i} v_{i} G_{i}^{\circ}=G_{H P O_{4}^{2-}}^{\circ}+G_{H^{+}}^{\circ}-G_{H_{2} P O_{4}^{-}}^{\circ} \tag{xxxxii,52}\\
& \Delta G_{G y p P u m}^{\circ}=\sum_{i} v_{i} G_{i}^{\circ}=G_{C a^{2+}}^{\circ}+G_{S S_{4}^{\circ-}}^{\circ}+2 \times G_{H_{2} O}^{\circ}-G_{G y p s u m}^{\circ} \tag{xxxxiii,52}\\
& \Delta G_{D C P D}^{\circ}=\sum_{i} v_{i} G_{i}^{\circ}=G_{C a^{2+}}^{\circ}+G_{H P O_{4}^{2-}}^{\circ}+2 \times G_{H_{2} O}^{\circ}-G_{D C P D}^{\circ} \tag{xxxxiv,52}
\end{align*}
$$

Equation (26) gives the definition of activity and how it is related to molality by the activity coefficient. Expanding Equation (26) to define the activities of the reacting species

$$
\begin{align*}
& a_{\mathrm{H}_{2} \mathrm{O}}=\gamma_{\mathrm{H}_{2} \mathrm{O}} \times m_{\mathrm{H}_{2} \mathrm{O}} \tag{xxxxy,53}\\
& a_{\mathrm{H}_{3} \mathrm{PO}_{4}}=\gamma_{\mathrm{H}_{3} \mathrm{PO}_{4}} \times m_{\mathrm{H}_{3} \mathrm{PO}_{4}} \tag{xxxxvi,54}\\
& a_{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}}=\gamma_{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}} \times m_{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}} \tag{xxxxvii,55}\\
& a_{\mathrm{HPO}_{4}^{2-}}=\gamma_{\mathrm{HPO}_{4}^{2-}} \times m_{\mathrm{HPO}_{4}^{2-}} \tag{xxxxviii,56}\\
& a_{\mathrm{HSO}_{4}^{-}}=\gamma_{\mathrm{HSO}_{4}^{-}} \times m_{\mathrm{HSO}_{4}^{-}} \tag{xxxxix,57}\\
& a_{\mathrm{SO}_{4}^{2-}}=\gamma_{\mathrm{SO}_{4}^{2-}} \times m_{\mathrm{SO}_{4}^{2-}} \tag{xxxxx,58}\\
& a_{\mathrm{H}^{+}}=\gamma_{\mathrm{H}^{+}} \times m_{\mathrm{H}^{+}} \tag{xxxxxi,59}\\
& a_{\mathrm{Ca}^{2+}}=\gamma_{\mathrm{Ca}^{2+}} \times m_{\mathrm{Ca}^{2+}} \tag{xxxxxii,60}
\end{align*}
$$

The degree of freedom of the model is now 8 and it needs to be brought down to zero to run the simulation. The last set of equations contains eight activity coefficients that are not yet defined.

Before defining those activity coefficients, an expression for the ionic strength of the aqueous solution is needed. Using Equation (25), the ionic strength of the solution can be written as

$$
I=\frac{1}{2}\left[\begin{array}{l}
\left(m_{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}} \times z_{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}}^{2}\right)+\left(m_{\mathrm{HPO}_{4}^{2-}} \times z_{\mathrm{HPO}_{4}^{2}}^{2}\right)+\left(m_{\mathrm{HSO}_{4}^{-}} \times z_{\mathrm{HSO}_{4}^{-}}^{2}\right) \tag{xxxxxiii,61}\\
+\left(m_{\mathrm{SO}_{4}^{2-}} \times z_{\mathrm{SO}_{4}^{2-}}^{2}\right)+\left(m_{\mathrm{H}^{+}} \times z_{\mathrm{H}^{+}}^{2}\right)+\left(m_{\mathrm{Ca}^{2+}} \times z_{\mathrm{Ca}^{2+}}^{2}\right)
\end{array}\right]
$$

The hydrogen ion activity in a solution is an important concept in many chemical and biological processes. The magnitude of this activity is measured by the pH , where $p H=-\log _{10}\left(a_{H^{+}} \times \rho_{H_{2} O}\right)$

Note that the mass density of water was used to convert the activity concentration scale from molality to molarity as required by the $p H$ definition. In other words, $p H$ is the negative base 10-logarithm of the hydrogen ion activity given by molarity units.

Finally, activity coefficients of the reacting species must be defined to bring this model to completion. The following correlations ${ }^{(14)}$ for the activity coefficients of phosphoric acid and water were determined from vapor pressure data of pure solutions of phosphoric acid and water at $25^{\circ} \mathrm{C}$ and they will be used in the simulation

$$
\begin{align*}
& \gamma_{H_{2} \mathrm{O}}=-(0.87979)+(0.75533) \% P_{2} O_{5}-(0.0012084) \% P_{2} O_{5}{ }^{2}+\frac{(15.258)}{\% P_{2} O_{5}} \tag{xxxxxv,62}\\
& \gamma_{H_{3} P O_{4}}=(22.676)-(1.0192) \% P_{2} O_{5}+(0.01891) \% P_{2} O_{5}{ }^{2}-\frac{(159.56)}{\% P_{2} O_{5}} \tag{xxxxxvi,62}
\end{align*}
$$

Three sets of electrolyte activity coefficients will be employed to complete the model. Ideal solution, Debye-Hückel, and Robinson-Guggenheim-Bates models ${ }^{(7)}$ will be used alternately to write the activity coefficients of the remaining electrolytes. The simulation will be carried out utilizing each model and the three outputs will then be compared to one another.

Ideal solution model assumes that the physical properties of the mixture are not influenced by temperature or concentration and that there are no interactions between components; therefore, in an ideal solution, the activity of a substance is equal to its concentration. This corresponds to activity coefficients that equal unity

$$
\gamma_{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}}=\gamma_{\mathrm{HPO}_{4}^{2-}}=\gamma_{\mathrm{HSO}_{4}^{-}}=\gamma_{\mathrm{SO}_{4}^{2-}}=\gamma_{\mathrm{H}^{+}}=\gamma_{\mathrm{Ca}^{2+}}=1 \quad(\mathrm{xxxxxviia}-\mathrm{xxxxxxia}, 62)
$$

The ideal solution model provides a limiting case for the behavior of an actual solution. The model can describe real solutions at low concentrations.

In 1923 and for the first time, ion-ion and ion-solvent interactions were accounted for in an electrolyte model proposed by Debye and Hückel. The Debye-Hückel model also accounts for temperature and ionic radius effects on solution behavior. Activity coefficients based on this model are obtained using Equation (27)
$-\log \gamma_{H_{2} P O_{4}^{-}}=\frac{A z_{H_{2} P_{4}^{-}}^{2} \sqrt{I}}{1+\beta r_{H_{2} P O_{4}^{-}} \sqrt{I}}$
(xxyxxviib, 62)
$-\log \gamma_{\mathrm{HPO}_{4}^{2-}}=\frac{A z_{\mathrm{HPP}_{4}^{2-}}^{2} \sqrt{I}}{1+\beta r_{\mathrm{HPO}_{4}^{2-}} \sqrt{I}}$
$-\log \gamma_{\mathrm{HSO}_{4}^{-}}=\frac{A z_{\mathrm{HSO}_{4}^{-}}^{2} \sqrt{I}}{1+\beta r_{\mathrm{HSO}_{4}^{-}} \sqrt{I}}$
(xxxxxviiiib, 62)
$-\log \gamma_{\text {SO }_{4}^{2-}}=\frac{A z_{\mathrm{SO}_{4}^{2-}}^{2} \sqrt{I}}{1+\beta r_{\mathrm{SO}_{4}^{2-}} \sqrt{I}}$
(xxxxxixb, 62)
$-\log \gamma_{H^{+}}=\frac{A z_{H^{+}}^{2} \sqrt{I}}{1+\beta r_{H^{+}} \sqrt{I}}$
$-\log \gamma_{C a^{2+}}=\frac{A z_{C^{2+}}^{2} \sqrt{I}}{1+\beta r_{C a^{2+}} \sqrt{I}}$
(xxxxxxib, 62)
(xxxxxxiib, 62)

Values of r_{i}, A, and β are available in the literature. Values of r_{i} for many common electrolytes are given in Table $1{ }^{(7)}$ while Equations (28) and (29) provide estimates for A and β as functions of temperature. The Debye-Hückel model generates adequate results for weak electrolyte solutions up to 0.1 molal ionic strength.

The third set of electrolyte activity coefficients that will be used is given by the Robinson-Guggenheim-Bates model. The model adds a considerable improvement to the Debye-Hückel model by subtracting an adjustable parameter term that will increase the range of adequacy up to 1 molal ionic strength. Activity coefficients based on this model are obtained using Equation (30)

$$
\begin{align*}
& -\log \gamma_{H_{2} P O_{4}^{-}}=\left(\frac{0.511 I}{1+1.5 I}-0.2 I\right) z_{H_{2} P O_{4}^{-}}^{2} \tag{xxxxxviic,62}\\
& -\log \gamma_{H P O_{4}^{2-}}=\left(\frac{0.511 I}{1+1.5 I}-0.2 I\right) z_{H P O_{4}^{2-}}^{2} \\
& -\log \gamma_{H S O_{4}^{-}}=\left(\frac{0.511 I}{1+1.5 I}-0.2 I\right) z_{H S O_{4}^{-}}^{2} \\
& -\log \gamma_{S O_{4}^{2-}}=\left(\frac{0.511 I}{1+1.5 I}-0.2 I\right) z_{S_{4}^{2-}}^{2} \\
& -\log \gamma_{H^{+}}=\left(\frac{0.511 I}{1+1.5 I}-0.2 I\right) z_{H^{+}}^{2} \\
& -\log \gamma_{C a^{2+}}=\left(\frac{0.511 I}{1+1.5 I}-0.2 I\right) z_{C a^{2+}}^{2}
\end{align*}
$$

(xxxxxviiic, 62)
(xxxxxixc, 62)
(xxxxxxc, 62)
(xxxxxxic, 62)
(xxxxxxiic, 62)

The model is now complete with 62 unknowns to solve using 62 equations. A computer code will be used to solve the model using different inputs of temperatures, liquid phase sulfuric acid contents, and electrolyte activity coefficient models.

CHAPTER 4. RESULTS AND DISCUSSION

4.1 Temperature Effect on Equilibrium

Experimental data of equilibrium constants ${ }^{(7)}$ and solubility products ${ }^{(8)(9)(10)}$ of model reactions were found at various temperatures. Least squares regression was used to fit the data points to Equation (23) by manipulating the values of $\Delta C p^{\circ}$ and ΔH°.

$$
\begin{equation*}
\ln K=\ln K^{\circ}-\frac{\Delta H^{\circ}}{R}\left(\frac{1}{T}-\frac{1}{T^{\circ}}\right)-\frac{\Delta C p^{\circ}}{R}\left(\ln \frac{T^{\circ}}{T}-\frac{T^{\circ}}{T}+1\right) \tag{23}
\end{equation*}
$$

Table 3 displays two values of $\Delta C p^{\circ}$ and ΔH° for each equilibrium reaction. One of those two values is the stoichiometric sum of the reference state thermodynamic properties of the reacting species found in the literature ${ }^{(7)(11)(12)(13)}$. The other value is the adjusted value by least squares regression to fit the data points to Equation (23).

Table 3. Literature and Regressed Values of Thermodynamic Functions

Equilibrium Reaction	$\Delta \mathrm{CP}^{\circ}(\mathrm{J} / \mathrm{mol} \mathrm{K})$		$\Delta H^{\circ}(\mathrm{J} / \mathrm{mol})$	
	literature	regression	literature	regression
$\mathrm{HSO}_{4}^{-} \longleftrightarrow \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}$	-209.00	-310.01	-21930	-16928
$\mathrm{H}_{3} \mathrm{PO}_{4} \longleftrightarrow \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	-155.00	-155.41	-7950	-7663
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \longleftrightarrow \mathrm{H}^{+}+\mathrm{HPO}_{4}^{2-}$	-226.00	-248.97	+4150	+4034
$\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{Ca}^{2+}+\mathrm{SO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}$	-365.30	-493.59	-1160	+4338
$\mathrm{CaHPO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{Ca}^{2+}+\mathrm{HPO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}$	-399.30	-878.73	-3050	-3050

Equation 23 was developed assuming a temperature-independent heat capacity to simplify the integration of the heat capacity function; therefore, the difference between the two values of $\Delta C p^{\circ}$ and ΔH° for each reaction given in Table 3 shows the magnitude of heat capacity dependence on temperature. The closer the adjusted values to the reference state values of $\Delta C p^{\circ}$ and ΔH° are, the more independent from temperature heat capacity is likely to be and vice versa. It is noteworthy to mention that the two values of $\Delta C p^{\circ}$ and ΔH° for each reaction given in Table 3 are presented to show the degree of heat capacity dependence on temperature and not to compare both values to one another.

The heat capacity of dissolution for $\mathrm{H}_{3} \mathrm{PO}_{4}$ is almost independent of temperature, while for $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is slightly dependent on temperature. On the other hand, the heat capacity of dissolution for $\mathrm{HSO}_{4}{ }^{-}$is most likely a strong function of temperature. The heat capacity of solubility for gypsum is probably dependent on temperature to a great extent. The adjusted $\Delta H_{G y p s u m}{ }^{\circ}$ value was considerably different from the reference state value of $\Delta H_{\text {Gypsum }}{ }^{\circ}$ in order to account for that dependence. Only two data points of DCPD solubility product ${ }^{(9)(10)}$ were found and used in the regression. The reference state value of $\Delta H_{D C P D}{ }^{\circ}$ was kept the same and $\Delta C p_{D C P D}{ }^{\circ}$ was adjusted to fit a straight line through the two data points. The heat capacity of solubility for DCPD seems to have significant temperature dependence.

Temperature effect on equilibrium and the results of Table 3 can be illustrated by Figures 5 through 9. Equilibrium constants and solubility products were computed and plotted versus temperature using both values of $\Delta C p^{\circ}$ and ΔH° given in Table 3. Experimental data were also plotted with both computed values to show the degree of accuracy or the degree of deviation of the computed values.

The adjusted values of $\Delta C p^{\circ}$ and ΔH° were used in the simulation rather than the reference state values because they give a more accurate representation of the thermodynamic equilibrium as demonstrated by Figures 5 through 9. However, If calculations are to be carried out at the reference state temperature of $25^{\circ} \mathrm{C}$, Equation (23) reduces to Equation (24) and the values of $\Delta C p^{\circ}$ and ΔH° become irrelevant. Equation (24) was developed earlier in chapter two and is given by $\ln K^{\circ}=\frac{-\Delta G^{\circ}}{R T^{\circ}}$

Generally, $\Delta C p^{\circ}$ and ΔH° for any constant temperature simulation become insignificant provided that the equilibrium constants or the partial molar Gibbs free energy for the different species are available at that temperature.

Figure 5. $K_{H S O 4}$ as a Function of Temperature

Figure 6. $K_{H 3 P O 4}$ as a Function of Temperature

Figure 7. $K_{H 2 P O 4}$ as a Function of Temperature

Figure 8. $K_{\text {Gypsum }}$ as a Function of Temperature

Figure 9. $K_{D C P D}$ as a Function of Temperature

4.2 Temperature Effect on System Variables

Using temperature as an input list that varied from 0 to $100^{\circ} \mathrm{C}$, the simulation was ran using three different activity coefficient models: ideal solution, Debye-Hückel, and Robinson-Guggenheim-Bates. Each simulation run was carried out with five different inputs of the effective sulfuric acid content of the liquid phase.

Ionic strength decreased linearly with increasing temperature. This result shows that the average degree of ionization, and thus the electrostatic interactions among ions, tends to decrease with increasing temperature. The ideal solution model predicted the lowest values for ionic strength while the Debye-Hückel model predicted the highest. Robinson-Guggenheim-Bates model predicted intermediate values for ionic strength but closer to those predicted by the ideal solution model. Furthermore, Debye-Hückel and Robinson-Guggenheim-Bates models prediction of ionic strength becomes closer to the ideal solution model prediction as ionic strength value decreases. This is expected since both models reduce to the ideal solution model at an ionic strength of zero.

The liquid phase $p H$ increased almost linearly with increasing temperature. This result shows that the activity, and thus the molality, of the hydrogen ion tends to decrease with increasing temperature. This observation is in agreement with the previous one concerning ionic strength. As temperature increases, the average degree of ionization decreases which will decrease the molality and activity of the hydrogen ion. For most of the temperature range, the ideal solution model predicted the lowest values while the Robinson-Guggenheim-Bates model predicted the highest. The Debye-Hückel model on the other hand, predicted intermediate pH values for temperatures between 20 and $70^{\circ} \mathrm{C}$, lowest for temperatures below $20^{\circ} \mathrm{C}$, and highest for temperatures above $70^{\circ} \mathrm{C}$.

The solid phase content of DCPD expressed as $\% \mathrm{P}_{2} \mathrm{O}_{5}$, also known as the phosphate lattice loss, is the variable of most interest. Simulation results indicated that phosphate lattice loss increased rapidly with increase in temperature. As was shown earlier, the solubility product of DCPD decreases as temperature increases, which is in agreement with increasing phosphate losses at elevated temperatures.

The ideal solution model predicted the lowest values for phosphate lattice loss while the Debye-Hückel model predicted the highest. Robinson-Guggenheim-Bates model predicted intermediate values for phosphate lattice loss but closer to those predicted by the ideal solution model. Furthermore, Debye-Hückel and Robinson-Guggenheim-Bates models prediction of phosphate lattice loss becomes closer to the ideal solution model prediction as temperature decreases.

According to the Equilibrium constants and the solubility products plots, low reactor temperatures will increase the dissolution of DCPD and decrease the dissolution of gypsum. This will increase the solid content of gypsum and decrease its content of DCPD. Low reactor temperatures will also increase the dissociation of $\mathrm{HSO}_{4}{ }^{-}$, which will increase the concentration of $\mathrm{SO}_{4}{ }^{2-}$ ions in the aqueous solution. This will shift the equilibrium of gypsum towards more precipitation. On the contrary, low reactor temperatures will decrease the dissociation of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$, which will decrease the concentration of $\mathrm{HPO}_{4}{ }^{2-}$ ions in the aqueous solution. This will shift the equilibrium of DCPD towards more dissolution.

Before deciding on how low of a temperature the reactor should be operated at, more equilibrium data is needed to perform more meticulous regression and obtain more precise values of the equilibrium constants especially for gypsum and DCPD.

Figure 10. Ionic Strength Versus Temperature - Ideal Solution Model

Figure 11. Ionic Strength Versus Temperature - Debye-Hückel Model

Figure 12. Ionic Strength Versus Temperature - Robinson-Guggenheim-Bates Model

Figure 13. Ionic Strength at $1.5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ as a Function of Temperature

Figure 14. $p H$ Versus Temperature - Ideal Solution Model

Figure 15. $p H$ Versus Temperature - Debye-Hückel Model

Figure 16. pH Versus Temperature - Robinson-Guggenheim-Bates Model

Figure 17. pH at $1.5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ as a Function of Temperature

Figure 18. Lattice Loss Versus Temperature - Ideal Solution Model

Figure 19. Lattice Loss Versus Temperature - Debye-Hückel Model

Figure 20. Lattice Loss Versus Temperature - Robinson-Guggenheim-Bates Model

Figure 21. Lattice Loss at $1.5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ as a Function of Temperature

4.3 Sulfuric Acid Effect on System Variables

Using sulfuric acid content of the liquid phase as an input list that varied from 0.01 to 2.50% by mass, the simulation was ran using three different activity coefficient models: ideal solution, Debye-Hückel, and Robinson-Guggenheim-Bates. Each simulation run was carried out with five different inputs of temperature.

Ionic strength increased almost linearly with increasing $\% \mathrm{H}_{2} \mathrm{SO}_{4}$. This result shows that the average degree of ionization, and thus the electrostatic interactions among ions, tends to increase with increasing $\% \mathrm{H}_{2} \mathrm{SO}_{4}$. The ideal solution model predicted the lowest values for ionic strength while the Debye-Hückel model predicted the highest. Robinson-Guggenheim-Bates model predicted intermediate values for ionic strength but closer to those predicted by the ideal solution model. Furthermore, Debye-Hückel and Robinson-Guggenheim-Bates models prediction of ionic strength becomes closer to the ideal solution model prediction as ionic strength value decreases. This is expected since both models reduce to the ideal solution model at an ionic strength of zero.

The liquid phase $p H$ decreased linearly with increasing $\% \mathrm{H}_{2} \mathrm{SO}_{4}$. This result shows that the activity, and thus the molality, of the hydrogen ion tend to increase with increasing $\% \mathrm{H}_{2} \mathrm{SO}_{4}$. This observation is in agreement with the previous one concerning ionic strength. As $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ increases, the average degree of ionization increases which will increase the molality and activity of the hydrogen ion. For most of the $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ range, the ideal solution model predicted the lowest values while the Robinson-Guggenheim-Bates model predicted the highest. The Debye-Hückel model on the other hand, predicted intermediate $p H$ values between 1.15 and $1.75 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, lowest $p H$ values below $1.15 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, and highest $p H$ values above $1.75 \% \mathrm{H}_{2} \mathrm{SO}_{4}$.

The phosphate lattice loss decreased significantly with increase in $\% \mathrm{H}_{2} \mathrm{SO}_{4}$. As was shown earlier, sulfuric acid is used to extract phosphoric acid from phosphate rock while gypsum crystals will precipitate as a byproduct. Increasing precipitation of gypsum, due to increasing sulfuric acid concentration, will increase its concentration in the solid solution bringing the solid phase content of DCPD down.

The ideal solution model predicted the lowest values for phosphate lattice loss while the Debye-Hückel model predicted the highest. Robinson-Guggenheim-Bates model predicted intermediate values for phosphate lattice loss but closer to those predicted by the ideal solution model. Furthermore, Debye-Hückel and Robinson-Guggenheim-Bates models prediction of phosphate lattice loss becomes closer to the ideal solution model prediction as $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ increases.

Sulfuric acid dissociates instantaneously forming HSO_{4}^{-}and H^{+}ions in the liquid phase; therefore, high concentration of sulfuric acid also means high concentrations of $\mathrm{HSO}_{4}{ }^{-}$and H^{+}ions in the aqueous solution. According to the Equilibrium reactions of the thermodynamic model, increasing concentration of HSO_{4}^{-}will increase its dissociation rate to form more $\mathrm{SO}_{4}{ }^{2-}$ ions. Increasing concentration of $\mathrm{SO}_{4}{ }^{2-}$ ions will shift the equilibrium of gypsum towards more precipitation, which will decrease the concentration of Ca^{2+} ions in the aqueous solution. Increasing concentration of H^{+}ions due to increasing dissociation of sulfuric acid and $\mathrm{HSO}_{4}{ }^{-}$ions will slow down the dissociation of phosphoric acid and $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$ions, which will reduce the concentration of $\mathrm{HPO}_{4}{ }^{2-}$ in the aqueous solution. Decreasing concentrations of Ca^{2+} and $\mathrm{HPO}_{4}{ }^{2-}$ ions will shift the equilibrium of DCPD towards more dissolution and the phosphate losses will decrease as a consequence.

Figure 22. Ionic Strength Versus $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ - Ideal Solution Model

Figure 23. Ionic Strength Versus $\%_{\mathrm{H}_{2} \mathrm{SO}_{4} \text { - Debye-Hückel Model }}$

Figure 24. Ionic Strength Versus $\mathrm{OH}_{2} \mathrm{SO}_{4}$ - Robinson-Guggenheim-Bates Model

Figure 25. Ionic Strength at $25^{\circ} \mathrm{C}$ as a Function of $\% \mathrm{H}_{2} \mathrm{SO}_{4}$

Figure 26. pH Versus $\mathrm{H}_{2} \mathrm{SO}_{4}$ - Ideal Solution Model

Figure 27. pH Versus $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ - Debye-Hückel Model

Figure 28. pH Versus $\mathrm{O}_{2} \mathrm{SO}_{4}$ - Robinson-Guggenheim-Bates Model

Figure 29. pH at $25^{\circ} \mathrm{C}$ as a Function of $\% \mathrm{H}_{2} \mathrm{SO}_{4}$

Figure 30. Lattice Loss Versus $\%_{\mathrm{H}_{2} \mathrm{SO}_{4} \text { - Ideal Solution Model }}$

Figure 31. Lattice Loss Versus $\%_{H_{2}} \mathrm{SO}_{4}$ - Debye-Hückel Model

Figure 32. Lattice Loss Versus $\%_{2} \mathrm{HO}_{4}$ - Robinson-Guggenheim-Bates Model

Figure 33. Lattice Loss at $25^{\circ} \mathrm{C}$ as a Function of $\% \mathrm{H}_{2} \mathrm{SO}_{4}$

4.4 Model Validation

The model can be validated by comparing its results to literature data. Only two sets of phosphate lattice loss data were found in the literature. The thermodynamic model developed in the previous chapter was used to run two different simulations analogous to the literature data. Simulation results and literature data were then compared to each other to determine the validity of the developed thermodynamic model.

Griffith ${ }^{(14)}$ predicted the DCPD concentrations in the solid phase at a constant temperature of $25^{\circ} \mathrm{C}$ and a 28% liquid content of $\mathrm{P}_{2} \mathrm{O}_{5}$ for a specified range of liquid phase $\% \mathrm{H}_{2} \mathrm{SO}_{4}$. Griffith employed ideal solution, Debye-Hückel, and Bromley activity coefficient models to compute phosphate losses. Figure 34 shows Griffith's results and Figure 35 shows simulation results when ran at the same conditions. The model predicts slightly more phosphate losses than what Griffith had computed when ideal solution model is employed, but it predicts less phosphate losses than what Griffith had computed when Debye-Hückel model is employed.

Griffith used different values for $\Delta C p^{\circ}$ and ΔH° to estimate the equilibrium constants of model reactions, but that was unimportant since the simulation was run at the reference state temperature of $25^{\circ} \mathrm{C}$ which will reduce equation (23) to equation (24) and the values of $\Delta C p^{\circ}$ and ΔH° become irrelevant. The difference between the two predictions, even though minor, can be attributed to different factors. Griffith used different values for the reference state equilibrium constants and solubility products than those used in the simulation. In addition, Griffith assigned a value of unity to the second Debye-Hückel parameter, β, whereas Equation (29), presented earlier in Chapter 2, was used in the simulation to estimate that parameter.

Figure 34. Griffith Prediction of Lattice Loss at $25^{\circ} \mathrm{C}$

Figure 35. Model Prediction of Lattice Loss at $25^{\circ} \mathrm{C}$

The only real data found in the literature was that reported by Janikowski et al ${ }^{(15)}$. The solid phase content of DCPD expressed as $\% \mathrm{P}_{2} \mathrm{O}_{5}$ was measured at different liquid phase $\% \mathrm{H}_{2} \mathrm{SO}_{4}$. Janikowski's data was collected from an isothermal CSTR with a temperature of $78.5^{\circ} \mathrm{C}$ and a 31% liquid content of $\mathrm{P}_{2} \mathrm{O}_{5}$. A simulation was run at the same conditions to compare the results with the data. Figure 36 shows that the model prediction of phosphate losses is much lower than those depicted by Janikowski's data.

This discrepancy can be credited to electrolytes and other impurities unaccounted for by the thermodynamic model. These overlooked substances can substantially affect the thermodynamic equilibrium if present in large quantities. Another reason for this discrepancy can be attributed to mechanical malfunctions mentioned earlier in Chapter 1, e.g. poor filtering and insufficient mixing since Janikowski's data is a real industrial data representing practical circumstances. Busot and Griffith ${ }^{(16)}$ hypothesized that an unattained equilibrium in the reactor would result in greater phosphate losses than predicted by thermodynamic models that are developed assuming global equilibrium.

Values of $\triangle C p_{D C P D}{ }^{\circ}$ and $\Delta H_{D C P D}{ }^{\circ}$ used in the model were adjusted using only two data points as was mentioned earlier. This can result in an inaccurate calculation of the solubility product of DCPD, which can affect the model prediction of phosphate lattice loss. The model and Janikowski's data were employed to obtain a $K s p_{D C P D}$ at $78.5^{\circ} \mathrm{C}$. $K s p_{D C P D}$ at $78.5^{\circ} \mathrm{C}$ was used along with the other two values found for $K s p_{D C P D}$ at 25 and $37.5^{\circ} \mathrm{C}$ to adjust the values of $\Delta C p_{D C P D}{ }^{\circ}$ and $\Delta H_{D C P D}{ }^{\circ}$ using Equation (23). A $\Delta C p_{D C P D}{ }^{\circ}$ of $-1415.45[\mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})]$ and a $\Delta H_{D C P D}{ }^{\circ}$ of $+258.55[\mathrm{~J} / \mathrm{mol}]$ were found to yield the best fit of Janikowski's data as illustrated by Figure 37. Simulation input and output for the Robinson-Guggenheim-Bates curve in Figure 37 is included in Appendix 8.

Figure 36. Model Prediction of Lattice Loss at $78.5^{\circ} \mathrm{C}$

Figure 37. Adjusted Model Prediction of Lattice Loss at $78.5^{\circ} \mathrm{C}$

CHAPTER 5. SUMMARY, CONCLUSION, AND RECOMMENDATIONS

5.1 Summary

Phosphoric acid manufacturing by the dihydrate process involves inevitable phosphate losses due to the formation of gypsum crystals. One type of these losses is triggered by the crystallization of DCPD that has the same lattice structure as that of gypsum. As a result, gypsum and DCPD form a solid solution of a composition that can be controlled thermodynamically.

Thermodynamics of electrolyte solutions such as equilibrium and activity were reviewed. Two relationships, Equations (28) and (29), were developed to estimate the value of the two temperature-dependent Debye-Hückel parameters used in many ionic activity coefficient models. Experimental data of equilibrium constants were regressed to introduce new values of $\Delta C p^{\circ}$ and ΔH° of model reactions to be used in Equation 23 as adjustable parameters (Table 3) to better represent the thermodynamic equilibrium.

A thermodynamic model was developed based upon five equilibrium reactions to predict the limits of distribution of phosphates between the liquid and the solid phases in a reactor used to extract phosphoric acid from rock. Ideal Solution, Debye-Hückel, and Robinson-Guggenheim-Bates electrolyte activity coefficient models were employed alternately to complete the model and to carry out different simulations using several inputs of temperatures and liquid phase sulfuric acid contents. The results were then compared to other literature data to validate the model.

5.2 Conclusion

The developed relationships to estimate the value of the two temperaturedependent Debye-Hückel parameters yielded excellent results that can be shown by Figures 3 and 4. The adjusted fitting parameter values of $\Delta C p^{\circ}$ and ΔH° of model reactions resulted in a more accurate representation of the thermodynamic equilibrium as illustrated by Figures 5 through 9. The adjusted fitting parameter values of $\Delta C p^{\circ}$ and ΔH° for the dissolution of DCPD may not be very reliable since they were obtained by regressing only two experimental data points due to the scarcity of such data.

Decreasing temperature and increasing liquid phase sulfuric acid content was found to minimize phosphate lattice loss. The ideal solution model predicted the lowest values for phosphate lattice loss and the Debye-Hückel model predicted the highest, while Robinson-Guggenheim-Bates model predicted intermediate values. Completing the thermodynamic model with Ideal Solution and Debye-Hückel electrolyte activity coefficient models was found to bind all predictions of phosphate lattice loss.

The model predicts slightly more phosphate losses than what Griffith had computed when ideal solution model is employed, but it predicts less phosphate losses than what Griffith had computed when Debye-Hückel model is employed. Both models assume the formation of an ideal gypsum-DCPD solid solution. The difference between the two predictions can be attributed to different values of equilibrium constants, solubility products, and Debye-Hückel parameters used by Griffith. The model prediction of phosphate losses gave a lower bound to the real industrial data reported by Janikowski. Discrepancy can be accredited to the presence of impurities, mechanical inefficiencies, and unattained equilibrium in addition to the thermodynamically controlled lattice losses.

5.3 Recommendations

The two correlations for the activity coefficients of phosphoric acid and water used in the simulation were determined from vapor pressure data of pure solutions of phosphoric acid and water at $25^{\circ} \mathrm{C}$. The two relationships, Equations (xxxxxv, 62) and (xxxxxvi, 62), incorporate neither the temperature effect nor the effect of the other electrolytes present in the aqueous solution. The activity coefficients of both phosphoric acid and water need to be investigated and more rigorous relationships need to be developed to predict their values.

More research is recommended to identify the most common operating conditions in industry such as the temperature range and the liquid phase content of phosphates and sulfuric acid. Regression calculations and model simulations need to be performed within those operating conditions to better represent real situations. Moreover, more equilibrium data of gypsum and DCPD is needed to perform a more precise regression to adjust the values of $\Delta C p^{\circ}$ and ΔH°.

Finally, sensitivity analyses need to be conducted on the effects of $\Delta C p^{\circ}, \Delta H^{\circ}$, and other adjusted parameters on phosphate lattice losses. It is also suggested to place a 95% upper and lower confidence limit on the adjusted parameters' prospective figures.

REFERENCES

1. Parker, S. P., 1997, Dictionary of chemistry, McGraw-Hill, New York.
2. Van Der Sluis, S., Meszaros, Y., Wesselingh, J. A., and Van Rosmalen, G. M., 1986, A Clean Technology Phosphoric Acid Process, The Fertiliser Society, London.
3. Fröchen, J. and Becker, P., 1959, "Crystallization and Co-crystallization in the Manufacture of Wet-Process Phosphoric Acid", Proceedings of the I. S. M. A. Technical Conference, No. LE/59/59.
4. Connors, K. A., 1990, Chemical kinetics, VCH Publishers, New York.
5. Zemaitis, J. F. Jr., Clark, D. M., Rafal, M., and Scrivner, N. C., 1986, Handbook of Aqueous Electrolyte Thermodynamics, American Institute of Chemical Engineers, NewYork.
6. Smith, J. M. and Van Ness, H. C., 1987, Introduction to Chemical Engineering Thermodynamics, Fourth Edition, McGraw-Hill, New York.
7. Dean, J. A., 1992, Lange's Handbook of Chemistry, Fourteenth Edition, McGrawHill, New York.
8. Marshall, W. L., Slusher, R., and Jones, E. V.,1963, "Aqueous Systems at High Temperature. XIV", Journal of Chemical and Engineering Data.
9. Patel, P. R., Gregory, T. M., and Brown, W. E., 1974, "Solubility of $\mathrm{CaHPO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in the Quaternary System $\mathrm{Ca}(\mathrm{OH})_{2}-\mathrm{H}_{3} \mathrm{PO}_{4}-\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ ", Journal of Research, National Bureau of Standards, 78A(6), pp. 675-681.
10. Moreno, E. C. and Gregory, T. M., 1966, "Solubility of $\mathrm{CaHPO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and Formation of Ion Pairs in the System $\mathrm{Ca}(\mathrm{OH})_{2}-\mathrm{H}_{3} \mathrm{PO}_{4}-\mathrm{H}_{2} \mathrm{O}$ at $37.5^{\circ} \mathrm{C} "$, Journal of Research, National Bureau of Standards, 70A(6), pp. 545-552.
11. Atkins, P. W., 1994, Physical Chemistry, Fifth Edition, W. H. Freeman and Company, New York.
12. Lewis, G. N. and Randall, M., 1961, Thermodynamics, Second Edition, McGrawHill, New York.
13. Franks, F., 1973, Water, Plenum Press, London.
14. Griffith, D. J. Jr., 1985, Thermodynamic Bounds on Composition of Calcium SulfateCalcium Phosphate Solid Solutions in Equilibrium with Phosphoric Acid Solutions, M. S. Thesis, University of South Florida, Tampa, Florida.
15. Janikowski, S. M., Robinson, N., and Sheldrick, W. F., 1961, "Insoluble Phosphate Losses in Phosphoric Acid Manufacture by the Wet Process", Proceedings of the Fertilizer Society, No. 81.
16. Busot, J. C. and Griffith, J., 1987, "Thermodynamic Bounds and Composition of Calcium Sulfate-Calcium Phosphate Solid Solutions in Acid Equilibrium with Phosphoric Acid Solutions", Proceedings of the Second International Conference on Thermodynamics of Aqueous Electrolyte Solutions, Warrenton, Virginia.

APPENDICES

Appendix 1. Literature and Experimental Data

Table 4. Debye-Hückel Parameters Data

$T\left({ }^{\circ} \mathrm{C}\right)$	$A^{(7)}$	$\beta^{(7)}$
0	0.4918	0.3248
5	0.4952	0.3256
10	0.4989	0.3264
15	0.5028	0.3273
20	0.5070	0.3282
25	0.5115	0.3291
30	0.5161	0.3301
35	0.5211	0.3312
40	0.5262	0.3323
45	0.5317	0.3334
50	0.5373	0.3346
55	0.5432	0.3358
60	0.5494	0.3371
65	0.5558	0.3384
70	0.5625	0.3397
75	0.5695	0.3411
80	0.5767	0.3426
85	0.5842	0.3440
90	0.5920	0.3456
95	0.6001	0.3471
100	0.6086	0.3488

Table 5. Equilibrium Constants and Solubility Products at Various Temperatures

$T\left({ }^{\circ} \mathrm{C}\right)$	$K_{H S O 4}{ }^{(7)}$	$K_{H 3 P O 4}{ }^{\text {(7) }}$	$K_{H 2 P O 4}{ }^{\text {(7) }}$	$K_{G y p S u m}{ }^{(8)}$	$K_{D C P D}{ }^{(9)}(10)$
0	0.016672	0.00879	0.486407		
4.3	0.015417				
5		0.008453	0.522396		
10		0.008166	0.557186		
15	0.012764	0.007816	0.587489		
20		0.007464	0.612350		
25	0.010304	0.007112	0.633870	$4.22 \mathrm{E}-05$	$2.51 \mathrm{E}-07$
30	0.008913	0.006745	0.647143	$4.36 \mathrm{E}-05$	
35	0.008035	0.006368	0.653131		
37.5					$2.19 \mathrm{E}-07$
40	0.006761	0.005970	0.659174	$4.25 \mathrm{E}-05$	
50	0.005675	0.005284	0.656145		
60				$3.57 \mathrm{E}-05$	

Appendix 1. (Continued)

Table 6. Physical and Reference State Properties

	$M W^{(7)}$ ($\mathrm{Kg} /$ mole)	$\begin{gathered} C p^{0(7)(11)(12)(13)} \\ (\mathrm{J} / \mathrm{mol} \mathrm{~K}) \end{gathered}$	$\begin{gathered} H^{\circ(7)} \\ (\mathrm{J} / \mathrm{mol}) \end{gathered}$	$\begin{gathered} G^{\circ(7)} \\ (\mathrm{J} / \mathrm{mol}) \end{gathered}$	$\begin{gathered} Z \\ (e) \end{gathered}$	$r^{(7)}$ (A)
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.141945					NA
$\mathrm{H}_{2} \mathrm{SO}_{4}$	0.098080					NA
$\mathrm{H}_{2} \mathrm{O}$	0.018015	75.35	-285830	-237140		NA
$\mathrm{H}_{3} \mathrm{PO}_{4}$	0.097995	65	-1288340	-1142650		NA
$\mathrm{H}_{2} \mathrm{PO}_{4}$	0.096987	-90	-1296290	-1130390	-1	4
HPO_{4}	0.095979	-316	-1292140	-1089260	-2	4
HSO_{4}	0.097072	-84	-887340	-755910	-1	4
SO_{4}	0.096064	-293	-909270	-744530	-2	4
H	0.001008	0	0	0	+1	9
Ca	0.040078	-37	-542830	-553540	+2	6
Gypsum	0.172172	186	-2022600	-1797500		NA
DCPD	0.172088	197	-2403580	-2154750		NA

Table 7. Janikowski's Data

$\% \mathrm{H}_{2} \mathrm{SO}_{4}$	$\% \mathrm{P}_{2} \mathrm{O}_{5}$
1.350	0.960
1.370	0.920
1.385	0.890
1.455	0.850
1.460	0.830
1.515	0.740
1.540	0.765
1.550	0.765
1.655	0.710
1.660	0.670
1.665	0.720
1.680	0.660
1.710	0.670
1.715	0.690

Appendix 2. Matlab Code for Regression of A and β Literature Data

```
T = [0 5 1015 20 25 30 35 4045 505560657075 80 85 90 95 100] ';
A=[l0.4918 0.4952 0.4989 0.5028 0.5070 0.5115 0.5161 0.5211 0.5262 0.5317 ...
0.5373 0.5432 0.5494 0.5558 0.5625 0.5695 0.5767 0.5842 0.5920 0.6001 0.6086]';
B}=[\begin{array}{lll}{0.3248 0.3256 0.3264 0.3273 0.3282 0.3291 0.3301 0.3312 0.3323 0.3334 \ldots}
0.3346 0.3358 0.3371 0.3384 0.3397 0.3411 0.3426 0.3440 0.3456 0.3471 0.3488]';
TK = T + 273.15;
polyfit(TK,A,2)
ans =
0.00000513495200-0.00215443376623 0.69725708453699
polyfit(TK,B,2)
ans =
0.00000088002615 -0.00032917648667 0.34905962443669
Ar = (0.69725708453699)-(0.00215443376623).*(TK)+(0.00000513495200).*(TK).^2 ;
Br = (0.34905962443669)-(0.00032917648667).*(TK)+(0.00000088002615).*(TK).^2;
plot(T,A,'ko',T,Ar,'k-'),xlabel('Temperature('}\mp@subsup{}{}{\circ}\textrm{C})'),ylabel('Parameter A'
gtext('o = data'),gtext('- = fit')
plot(T,B,'ko',T,Br,'k-'),xlabel('Temperature('}\mp@subsup{}{}{\circ}\textrm{C})'),ylabel('Parameter Beta'
gtext('o = data'),gtext(' }-==\mathrm{ fit')
```


Appendix 3. Matlab Code for Regression of $K_{H S O 4}$ Experimental Data

```
R=8.314;
Tr=298.15;
T =[ll273.15 277.45 288.15 298.15 303.15 308.15 313.15 323.15]';
pK_HSO4=[l.778 1.812 1.894 1.987 2.050 2.095 2.170 2.246] ';
K_HSO4 = 10.^(- pK_HSO4);
% Global Variables, Initial Guesses, & Options
global T K HSO4;
parameters =[-21930-209];
OPTIONS(1) = 0;
% The Fun Function ( An m-File )
% function f= fun(parameters);
% global T K_HSO4 ;
% Delta_H_HSO4 = parameters(1,1);
% Delta_Cp_HSO4 = parameters(1,2);
% Kc_HSO4 = 0.01030386120442 .* exp (-(Delta_H_HSO4/R).*((1./T)-...
% (1/Tr)) - (Delta_Cp_HSO4/R).*(log(Tr./T)-(Tr./T)+1) );
% f= sum((Kc_HSO4-K_HSO}4).^2)
% Regression & Results, Kc_HSO4 = Calculated Equilibrium Constant
x = fmins('fun(x)',parameters,OPTIONS);
Delta_H_HSO4 = x(1,1);
ans =-1.692832807144829e+004;
Delta_Cp_HSO4 = x(1,2);
ans}=-3.100073820743674e+002
Delta_Hr_HSO4 = -21930;
Delta_Cpr_HSO4 = -209;
Kcl_HSO4 = 0.01030386120442 .* exp (-(Delta_H_HSO4/R).*((1./T)-(1/Tr)) - ..
    (Delta_Cp_HSO4/R).*(log(Tr./T)-(Tr./T)+1));
Kc2_HSO4 = 0.01030386120442 .* exp (-(Delta_Hr_HSO4/R).*((1./T)-(1/Tr)) - ...
    (Delta_Cpr_HSO4/R).*(log(Tr./T)-(Tr./T)+1) );
plot(T-273.15,K_HSO4,'ko',T-273.15,Kcl_HSO4,'k:',T-273.15,Kc2_HSO4,'k-'),...
xlabel('Temperature ( }\mp@subsup{}{}{\circ}\textrm{C})'),ylabel('K_H_S_O_4_^- (mol/Kg H_2O)'),..
title('K_H_S_O_4_^- Versus T'),...
gtext('o =-data'),gtext('^.^.^.^. = regression'),gtext('- = literature')
```


Appendix 4. Matlab Code for Regression of $K_{H 3 P O 4}$ Experimental Data

```
R=8.314;
Tr=298.15;
T = [273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 323.15] ';
pK_H3PO4 = [l.056 2.073 2.088 2.107 2.127 2.148 2.171 2.196 2.224 2.277] ';
K_H3PO4 = 10.^(- pK_H3PO4);
```

\% Global Variables, Initial Guesses, \& Options

```
global T K_H3PO4;
parameters =[-7950-155];
OPTIONS(1) = 0;
```

\% The Fun Function (An m-File)
$\%$ function $f=$ fun(parameters) ;
\% global T K_H3PO4;
\% Delta_H_H3PO4 = parameters(1,1) ;
\% Delta_Cp_H3PO4 = parameters $(1,2)$;
$\%$ Kc_H3PO4 $=0.00711213513653$.* $\exp \left(-\left(D e l t a _H _H 3 P O 4 / R\right) . *((1 . / T)-\ldots\right.$
$\% \quad(1 / \mathrm{Tr}))-\left(\right.$ Delta_Cp_H3PO4/R). $\left.{ }^{*}(\log (\mathrm{Tr} . / \mathrm{T})-(\mathrm{Tr} . / \mathrm{T})+1)\right)$;
$\% \mathrm{f}=\operatorname{sum}\left(\left(\mathrm{Kc} _\mathrm{H} 3 \mathrm{PO} 4-\mathrm{K} _\mathrm{H} 3 \mathrm{PO} 4\right) .{ }^{\wedge} 2\right)$;
\% Regression \& Results, Kc_H3PO4 = Calculated Equilibrium Constant
$x=$ fmins('fun(x)', parameters,OPTIONS) ;
Delta_H_H3PO4 $=x(1,1)$;
ans $=-7.663321868430035 \mathrm{e}+003$;
Delta_Cp_H3PO4 = $x(1,2)$;
ans $=-1.554144573028516 \mathrm{e}+002$;
Delta_Hr_H3PO4 $=-7950$;
Delta_Cpr_H3PO4 $=-155$;
Kcl_H3PO4 $=0.00711213513653 .^{*} \exp (-($ Delta_H_H3PO4/R).*((1./T)-(1/Tr)) $-\ldots$
$\left(\right.$ Delta_Cp_H3PO4/R). $\left.{ }^{*}(\log (\mathrm{Tr} . / \mathrm{T})-(\mathrm{Tr} . / \mathrm{T})+1)\right)$;
$\mathrm{Kc} 2 _\mathrm{H} 3 \mathrm{PO} 4=0.00711213513653 . * \exp (-($ Delta_Hr_H3PO4/R).*((1./T)-(1/Tr)) $-\ldots$
(Delta_Cpr_H3PO4/R). $\left.{ }^{*}(\log (\mathrm{Tr} . / \mathrm{T})-(\mathrm{Tr} . / \mathrm{T})+1)\right)$;
plot(T-273.15,K_H3PO4,'ko',T-273.15,Kcl_H3PO4,'k:',T-273.15,Kc2_H3PO4,'k-'),...
xlabel('Temperature $\left({ }^{\circ} \mathrm{C}\right)$ '),ylabel('K_H_3_P_O_4 ($\mathrm{mol} / \mathrm{Kg} \mathrm{H} \mathrm{_2O}$)'),...
title('K_H_3_P_O_4 Versus T'),...
$\operatorname{gtext}\left(\mathrm{o}^{-}=\operatorname{data}^{\prime}\right), \operatorname{gtext}\left({ }^{\prime} \wedge \wedge \wedge . \wedge=\right.$ regression'),gtext('- = literature')

```
R=8.314;
Tr=298.15;
T = [273.15 278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 323.15] ' ;
pK_H2PO4=[7.313 7.282 7.254 7.231 7.213 7.198 7.189 7.185 7.181 7.183]';
K_H2PO4 = 10 .^(- pK_H2PO4);
```

\% Global Variables, Initial Guesses, \& Options
global T K_H2PO4 ;
parameters $=[4150-226]$;
OPTIONS(1) $=0$;
\% The Fun Function (An m-File)
$\%$ function $\mathrm{f}=$ fun(parameters) ;
\% global T K_H2PO4 ;
\% Delta_H_H2PO4 = parameters $(1,1)$;
$\%$ Delta_Cp_H2PO4 $=$ parameters $(1,2)$;
\% Kc_H2PO4 = 6.338697112569273e-8 . \cdot exp ($-\left(\right.$ Delta_H_H2PO4/R). ${ }^{*}((1 . / \mathrm{T})-\ldots$
$\% \quad(1 / \mathrm{Tr}))-\left(\right.$ Delta_Cp_H2PO4/R). $\left.{ }^{*}(\log (\mathrm{Tr} . / \mathrm{T})-(\mathrm{Tr} . / \mathrm{T})+1)\right)$;
$\% \mathrm{f}=\operatorname{sum}\left(\left(\mathrm{Kc} _\mathrm{H} 2 \mathrm{PO} 4-\mathrm{K} _\mathrm{H} 2 \mathrm{PO} 4\right) .{ }^{\wedge} 2\right)$;
\% Regression \& Results, Kc_H2PO4 = Calculated Equilibrium Constant
$\mathrm{x}=\mathrm{fmins}($ 'fun(x)',parameters,OPTIONS) ;
Delta_H_H2PO4 = x $(1,1)$;
ans $=4.033524375681814 \mathrm{e}+003$;
Delta_Cp_H2PO4 = x $(1,2)$;
ans $=-2.489728900252766 \mathrm{e}+002$;
Delta_Hr_H2PO4 $=4150$;
Delta_Cpr_H2PO4 = - 226 ;
$\mathrm{Kcl} \mathrm{_H} 2 \mathrm{PO} 4=6.338697112569273 \mathrm{e}-8 . * \exp (-($ Delta_H_H2PO4/R).*((1./T)-(1/Tr)) $-\ldots$
$($ Delta_Cp_H2PO4/R). $*(\log (\mathrm{Tr} . / \mathrm{T})-(\mathrm{Tr} . / \mathrm{T})+1))$;
$\mathrm{Kc2} 2 \mathrm{H} 2 \mathrm{PO} 4=6.338697112569273 \mathrm{e}-8 . * \exp (-(\mathrm{Delta}$ _Hr_H2PO4/R).*((1./T)-(1/Tr)) $-\ldots$
(Delta_Cpr_H2PO4/R). $\left.{ }^{*}(\log (\mathrm{Tr} . / \mathrm{T})-(\mathrm{Tr} . / \mathrm{T})+1)\right)$;
plot(T-273.15,K_H2PO4,'ko',T-273.15,Kc1_H2PO4,'k:',T-273.15,Kc2_H2PO4,'k-'),...
xlabel('Temperature $\left({ }^{\circ} \mathrm{C}\right)$ '), ylabel ('K_H_2_P_O_4_- $(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O})$ '),...
title('K_H_2_P_O_4_^- Versus T'),...
$\operatorname{gtext}\left(\mathrm{o}^{-}=\operatorname{data}^{\prime}\right), \operatorname{gtext}\left({ }^{\prime} \wedge \wedge . \wedge \wedge .=\right.$ regression'),gtext(' $-=$ literature')

Appendix 6. Matlab Code for Regression of $K_{\text {Gypsum }}$ Experimental Data

```
R=8.314;
Tr=298.15;
T = [298.15 303.15 313.15 333.15] ';
K_Gypsum = [42.2e-6 43.6e-6 42.5e-6 35.7e-6] ' ;
% Global Variables, Initial Guesses, & Options
```

```
global T K_Gypsum ;
```

global T K_Gypsum ;
parameters =[-1160 -365.3];
parameters =[-1160 -365.3];
OPTIONS(1) = 0;
OPTIONS(1) = 0;
% The Fun Function (An m-File)
% function f= fun(parameters);
% global T K_Gypsum ;
% Delta_H_Gypsum = parameters(1,1);
% Delta_Cp_Gypsum = parameters(1,2) ;
% Kc_Gypsum = 42.2e-6 .* exp (-(Delta_H_Gypsum/R).*((1./T)-(1/Tr)) - ...
% (Delta_Cp_Gypsum/R).*(log(Tr./T)-(Tr./T)+1));
% f = sum((Kc_Gypsum-K_Gypsum).^2);
% Regression \& Results, Kc_Gypsum = Calculated Solubility Product
x = fmins('fun(x)',parameters,OPTIONS) ;
Delta_H_Gypsum = x(1,1);
ans =4.338149706356578e+003;
Delta_Cp_Gypsum = x (1,2);
ans=-4.935892366111605e+002;
Delta_Hr_Gypsum =-1160;
Delta_Cpr_Gypsum = -365.3;

```
Kcl_Gypsum \(=42.2 \mathrm{e}-6\).* \(\exp (-(\) Delta_H_Gypsum/R).*((1./T)-(1/Tr)) - ...
    (Delta_Cp_Gypsum/R).*(log(Tr./T)-(Tr./T)+1));
Kc2_Gypsum \(=42.2 \mathrm{e}-6\).* \(\exp (\)-(Delta_Hr_Gypsum/R).*((1./T)-(1/Tr)) - ...
    (Delta_Cpr_Gypsum/R).*(log(Tr./T)-(Tr./T)+1));
plot(T-273.15,K_Gypsum,'ko',T-273.15,Kcl_Gypsum,'k:',T-273.15,Kc2_Gypsum,'k-'),...
xlabel('Temperature \(\left({ }^{\circ} \mathrm{C}\right)\) '),ylabel('K_G_y_p_s_u_m \(\left.\left(\mathrm{mol} / \mathrm{Kg} \mathrm{H}_{-} 2 \mathrm{O}\right)^{\wedge} 4^{\prime}\right)\),...
title('K_G_y_p_s_u_m Versus T'),...
gtext('o = data'),gtext('^.^..^. = regression'),gtext('一 = literature')

\section*{Appendix 7. Matlab Code for Regression of \(K_{D C P D}\) Experimental Data}
```

R=8.314;
Tr=298.15;
T = [298.15 310.65]';
K_DCPD = [2.512663370009572e-7 2.19e-7] ';
% Global Variables, Initial Guesses, \& Options
global T K_DCPD ;
Delta_Cp_DCPD = [-399.3];
OPTIONS(1) = 0;
% The Fun Function (An m-File)
% function f= fun(Delta_Cp_DCPD) ;
% global T K_DCPD ;
% Kc_DCPD = 2.512663370009572e-7 .* exp (-(-3050/R).*((1./T)-(1/Tr)) - ..
% (Delta_Cp_DCPD/R).*(log(Tr./T)-(Tr./T)+1));
% f= sum((Kc_DCPD-K_DCPD).^2);
% Regression \& Results, Kc_DCPD = Calculated Solubility Product
Delta_Cp_DCPD = fmins('fun(x)',Delta_Cp_DCPD,OPTIONS) ;
ans =-8.787345583534251e+002;
Delta_Cpr_DCPD = -399.3;
Kcl_DCPD = 2.512663370009572e-7 .* exp (-(-3050/R).*((1./T)-(1/Tr)) - ...
(Delta_Cp_DCPD/R).*(log(Tr./T)-(Tr./T)+1));
Kc2_DCPD = 2.512663370009572e-7 .* exp (-(-3050/R).*((1./T)-(1/Tr)) - ...
(Delta_Cpr_DCPD/R).*(log(Tr./T)-(Tr./T)+1));
plot(T-273.15,K_DCPD,'ko',T-273.15,Kcl_DCPD,'k:',T-273.15,Kc2_DCPD,'k-'),...
xlabel('Temperature ('`)'),ylabel('K_D_C_P_D (mol/Kg H_2O)^4'),...
title('K_D_C_P_D Versus T'),...
gtext('o = data'),gtext('^.^.^.^. = regression'),gtext('- = literature')

```

\section*{Appendix 8. TK Solver Code of Thermodynamic Model}
```

; Liquid phase properties
TPM=m_H3PO4 + m_H2PO4 + m_HPO4
TSM=m_HSO4 + m_SO4
%P2O5 = (TPM\Theta_P2O5 MW_P2O5\phi_H2O) • 100
8
\phi_H2O=}\frac{MH2O}{M_Total
m_H2O =
; Total mass balance in the liquid phase
M_TPM = m_H3PO4MW_H3PO4 +m_H2PO4MW_H2PO4 +m_HPO4MW_HPO4
M_TSM = m_HSO4MW_\overline{HSO4 +m_SO-4MW_SO4}
M_Other =m_HMW_H+m_CaMW_Ca
M_Total = M_H2O +M_TPM + M_TSM + M_Other
; Electroneutrality
z_H2PO4m_H2PO4 + z_HPO4m_HPO4 + z_HSO4m_HSO4 + z_SO4m_SO4 + z_Hm_H + _ ___Cam_Ca = O
; Phenomenological assumptions
; 1) Liquid phase acid equilibria

```

```

K_H3PO4 = 拴H2PO4a_H
K_H2PO4 = = a_HPO4a_H
; 2) Solid-liquid equilibria
Ksp_Gypsum =}\frac{\mp@subsup{a}{_SO4a_Caa_H20}{}\mp@subsup{}{}{2}}{x_Gypsum

```

```

x_Gypsum + x_DCPD = 1
; Solid phase properties
\omega_DCPD =}\frac{\mp@subsup{x}{_}{\prime}DCPDMW_DCPD}{x_GypsumMW_Gypsum +x_DCPDMW_DCPD
%P2O5s = \omega_DCPD [\frac{1}{MW_DCPD }}

```

\section*{Appendix 8. (Continued)}
; Temperature-dependent equilibrium constants


; Reference state equilibrium constants
\(K r_{-} H S O 4=e^{\left[\frac{-\Delta G r_{-} H S O 4}{R T r}\right]}\)
\(K r_{-} H 3 P O 4=e^{\left[\frac{-\Delta G r_{-} H 3 P O 4}{R T r}\right]}\)
\(K r_{-} H 2 P O 4=e^{\left[\frac{-\Delta G r_{-} H 2 P O 4}{R T r}\right]}\)
Kspr Gypsum \(=e^{\left[\frac{-\Delta G r-G y p s u m}{R T_{r}}\right]}\)
\(K s p r D C P D=e^{\left[\frac{-\Delta G r D C P D}{R T_{r}}\right]}\)
; Reference state heat capacities of reaction
\(\Delta C p r_{-} H S O 4=C p r_{-} S O 4+C p r_{-} H-C p r_{-} H S O 4\)

\(\Delta \mathrm{Cpr}_{-}^{-} \mathrm{H} 2 \mathrm{PO} 4=\mathrm{Cpr}_{-}^{-} \mathrm{HPO} 4+\mathrm{Cpr} \mathbf{H}_{-}-\mathrm{Cpr} r_{-} \mathrm{H}_{2} \mathrm{PO} 4\)
\(\Delta C p r_{-} G y p s u m=C \overline{r_{-}} C a+C p r_{-} \bar{S} O 4+2 \overline{C p r} r_{-} 2 O-C p r \_G y p s u m\)
\(\triangle C p r_{-} D C P D=C p r_{-} C a+C p r_{-} H P O 4+2 C p r_{-} H 2 O-C p r_{-} D C P D\)
; Reference state enthalpies of reaction
\(\Delta \mathrm{Hr} r_{-} \mathrm{HSO} 4=\mathrm{Hr} \mathrm{HO}_{2}+\mathrm{Hr}_{-} \mathrm{H}-\mathrm{Hr} \mathrm{HSO}_{-}\)
\(\Delta \mathrm{Hr}_{-}^{-} \mathrm{H} 3 \mathrm{PO} 4=\overline{H r}_{-} \mathrm{H} 2 \mathrm{PO} 4+\mathrm{Hr}_{-} \mathrm{H}-\mathrm{Hr} r_{-} \mathrm{H} 3 \mathrm{PO} 4\)
\(\Delta \mathrm{Hr}_{-}^{-} \mathrm{H} 2 \mathrm{PO} 4=\mathrm{Hr}-\mathrm{HPO} 4+\mathrm{Hr}_{-}^{-} \overline{\mathrm{H}}-\mathrm{Hr} r_{-}^{-H} 2 \mathrm{PO} 4\)

\(\Delta H r_{-}^{-} D C P D=H r_{-} \overline{C a}+\mathrm{Hr}_{-} \overline{H P O} 4+2 \mathrm{Hr}_{-} \overline{\mathrm{H}} 2 \mathrm{O}-\mathrm{Hr} \bar{D} \mathrm{CPD}\)

\section*{Appendix 8. (Continued)}
```

; Reference state Gibbs free energies of reaction
|r_HSO4 = Gr_SO4 +Gr_H - Gr_HSO4
\DeltaGr_H3PO4 = Gr_H2PO4 +Gr_H-Gr_H3PO4
|Gr_H2PO4 = Gr_HPO4 +Gr_\overline{H}-Gr_\overline{H}2PO4
|Gr_Gypsum = Gr_Ca +Gr_\overline{SO4 + 2Gr_H2O - Gr_Gypsum}
|Gr_DCPD = Gr_Ca +Gr_HPO4 + 2Gr_H2O - Gr_DCPD
; Defining activities
a_H2O = m_H2Or__H2O
a_H3PO4 =m_H3PO4 \gamma_H3PO4
a_H2PO4 = m_H2PO4 \gamma_H2PO4
a_HPO4 = m_ +
a_HSO4 = m_HSO4 r_HSO4
a_SO4 = m_SO4 r_SO4
a_H=m_H\gamma_H
a_Ca = m_Car_Ca
; Defining solution's ionic strength and pH

```

```

 N+m_Hz_-H}\mp@subsup{}{}{2}+\mp@subsup{m}{-}{}Ca\mp@subsup{z}{-}{}C\mp@subsup{a}{}{2}
 pH=-log(a_H\rho_H2O)
; Non-electrolyte activity coefficients
\mp@subsup{\gamma}{-}{}H2O=-(0.87979)+(0.75533%P2O5)-[0.0012084%P2O5 2}]+[\frac{15.258}{%P2O5}
\gamma_H3PO4 = (22.676)-(1.0192%P2O5)+[0.01891%P2O5 2}]-[\frac{159.56}{%P2O5}
; Electrolyte activity coefficients
; a) Ideal solution model
\gamma_H2PO4 = 1
\gamma_HPO4 = 1
\gamma_HSO4 = 1
r_SO4 = 1
r_H=1
r_Ca = 1
; b) Debye-Huckel model

```
\(A=(0.69725708453699)-(0.00215443376623) T+(0.00000513495200) T^{2}\)
\(\beta=(0.34905962443669)-(0.00032917648667) T+(0.00000088002615) T^{2}\)

\section*{Appendix 8. (Continued)}
\[
\begin{aligned}
& \gamma_{-} H 2 P O 4=10^{-\left[\frac{A z_{-} H 2 P O 4{ }^{2} I^{0.5}}{1+\left[\beta r_{-} H 2 P O 4 I^{.5}\right]}\right]} \\
& \gamma_{\_} H P O 4=10^{-\left[\frac{A z_{-} H P O 4{ }^{2} I^{0.5}}{1+\left[\beta r_{-} H P O 4 I^{.5}\right]}\right]} \\
& \left.\gamma_{\_} H S O 4=100^{-\left[\frac{A z_{-} H S O 4}{}{ }^{2} I^{0.5}\right.} 1+\left[\beta r_{-} H S O 4 I^{.5}\right]\right] \\
& \gamma S O 4=10^{-\left[\frac{A z_{-} S O 4^{2} I^{0.5}}{1+\left[\beta r_{-} S O 4 I^{.5}\right]}\right]} \\
& \gamma_{-} H=10^{-\left[\frac{A z_{-} H^{2} I^{0.5}}{1+\left[\beta r_{-} H I^{.5}\right]}\right]} \\
& \gamma_{-} C a=10^{-\left[\frac{A z_{-} C a^{2} I^{0.5}}{1+\left[\beta r_{-} C a I^{.5}\right]}\right]}
\end{aligned}
\]
; c) Robinson-Guggenheim-Bates model
\[
\begin{aligned}
& \gamma_{-} \mathrm{H} 2 \mathrm{PO} 4=10^{-\left[\left[\frac{.511 I}{1+1.5 I}-(.2 I)\right] z_{-} \mathrm{H}_{2} \mathrm{PO}^{2}\right]} \\
& \gamma_{-} H P O 4=10 \\
& -\left[\left[\frac{.511 I}{1+1.5 I}-(.2 I)\right] z_{-H P O 4}{ }^{2}\right] \\
& 10^{-\left[\left[\frac{.511 I}{1+1.5 I}-(.2 I)\right] z_{-} \mathrm{HSO4}^{2}\right]} \\
& \gamma_{-} S O 4=10 \\
& -\left[\left[\frac{.511 I}{1+1.5 I}-(.2 I)\right] z_{-} S O 4^{2}\right] \\
& \gamma_{-} H=10 \\
& -\left[\left[\frac{.511 I}{1+1.5 I}-(.2 I)\right] z_{-}{ }^{2}\right] \\
& \gamma_{-} C a=10 \\
& -\left[\left[\frac{.511 I}{1+1.5 I}-(.2 I)\right] z_{-} \mathrm{Ca}^{2}\right]
\end{aligned}
\]

\section*{Appendix 8. (Continued)}
```

; Programming: list guess

```
```

TPM = place('TPM , elt() + 1)
TSM = place('TSM , elt() + 1)
\phi_H2O = place ('\phi_H2O , elt() + 1)
pH=place('pH , elt() + 1)
I = place('I , elt() + 1)
x_DCPD = place ('x_DCPD , elt() + 1)
M_Total = place('M_Total , elt() + 1)
m_HSO4 = place('m_HSO4 , elt() + 1)
m_SO4 = place('m_SO4 , elt() + 1)
m_H=place('m_H, elt() + 1)
\gamma_HSO4 = place('\gamma_HSO4 , elt() + 1)
\gamma_SO4 = place('\gamma_SO4 , elt() + 1)
\gamma_H=place(' }\mp@subsup{\gamma}{-}{\prime}H,\mathrm{ elt() + 1)

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline Status & Input & Name & Output & Unit & \begin{tabular}{l}
Comment \\
Program input \& output for RGB curve in Figure 37
\end{tabular} \\
\hline & 8.314 & R & & J/mol K & ideal gas constant \\
\hline & 298.15 & Tr & & K & reference temperature \\
\hline & 351.65 & T & & K & reactor's temperature \\
\hline LGuess & 7.814255438 & TPM & & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & Total Phosphate Molality \\
\hline LGuess & . 2371261531 & TSM & & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & Total Sulfate Molality \\
\hline & 31 & \%P2O5 & & \% mass & \% P2O5 equivalence by mass ( \(\mathrm{Kg} \mathrm{P} 2 \mathrm{O} 5 / \mathrm{Kg} \mathrm{Sol}\) ) \\
\hline L & 1.3 & \%H2SO4 & & \% mass & \% H2SO4 equivalence by mass ( \(\mathrm{Kg} \mathrm{H} 2 \mathrm{SO} 4 / \mathrm{Kg} \mathrm{Sol}\) ) \\
\hline L & & \%P2O5s & 1.000000931 & \% mass & \% P2O5 equivalence by mass in the solid phase \\
\hline & . 5 & ©_P2O5 & & \(\mathrm{mol} / \mathrm{mol}\) & mol of P2O5 equivalence / mol of TPM \\
\hline & 1 & \(\Theta_{-} \mathrm{H} 2 \mathrm{SO} 4\) & & \(\mathrm{mol} / \mathrm{mol}\) & mol of H 2 SO 4 equivalence / mol of TSM \\
\hline & . 5 & 世_P2O5 & & \(\mathrm{mol} / \mathrm{mol}\) & mol of P 2 O 5 equivalence / mol of DCPD \\
\hline & . 997 & \(\rho_{-} \mathrm{H} 2 \mathrm{O}\) & & Kg H2O / L & reference state density of water \\
\hline LGuess & . 5589657664 & ¢_ H 2 O & & mass fraction & weight fraction of water in the liquid \\
\hline L & & \(\omega_{-}\)DCPD & . 0242472289 & mass fraction & DCPD mass fraction in solid solution \\
\hline LGuess & . 505546421 & I & & \(\mathrm{mol} / \mathrm{L}\) & ionic strength, \(\mathrm{I}=0.5 \Sigma\left[\mathrm{~m}_{-} \mathrm{i}\left(\mathrm{z}_{-} \mathrm{i}\right)^{\wedge} 2\right]\) \\
\hline LGuess & . 3447376327 & pH & & & pH of solution \\
\hline L & & A & . 5746269037 & & Debye-Huckel constant, valid @ \(0-100^{\circ} \mathrm{C}\) \\
\hline L & & \(\beta\) & . 3421267367 & & Debye-Huckel constant, valid @ \(0-100^{\circ} \mathrm{C}\) \\
\hline L & & x_Gypsum & . 9757412226 & mol fraction & gypsum mole fraction in solid solution \\
\hline LGuess & . 0242587774 & \(\mathrm{x}_{-} \mathrm{DCPD}\) & & mol fraction & DCPD mole fraction in solid solution \\
\hline & 1 & M_H2O & & \(\mathrm{Kg} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & mass of water / mass of water \\
\hline L & & M_TPM & . 7654937577 & \(\mathrm{Kg} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & mass of TPM / mass of water \\
\hline L & & M_TSM & . 0230165961 & \(\mathrm{Kg} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & mass of TSM / mass of water \\
\hline L & & M_Other & . 0005079727 & \(\mathrm{Kg} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & mass of other species / mass of water \\
\hline LGuess & 1.789018327 & M_Total & & Kg / Kg H2O & mass of solution / mass of water \\
\hline
\end{tabular}

Appendix 8. (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{25}{*}{Status} & Input & Name & Output & Unit & Comment \\
\hline & 4 & r_H2PO4 & & \(\mathrm{A}^{\circ}\) & effective ionic radius \\
\hline & 4 & r_HPO4 & & \(\mathrm{A}^{\circ}\) & effective ionic radius \\
\hline & -4 & r_HSO4 & & \(\mathrm{A}^{\circ}\) & effective ionic radius \\
\hline & 4 & r_SO4 & & \(\mathrm{A}^{\circ}\) & effective ionic radius \\
\hline & 9 & r_H & & \(\mathrm{A}^{\circ}\) & effective ionic radius \\
\hline & 6 & r_Ca & & \(A^{\circ}\) & effective ionic radius \\
\hline & . 1419446 & MW_P2O5 & & Kg / mole & molecular weight of phosphate equivalence \\
\hline & . 0980796 & MW_H2SO4 & & Kg / mole & molecular weight of sulfuric acid equivalence \\
\hline & . 0180154 & MW_H2O & & Kg / mole & molecular weight of water \\
\hline & . 0979954 & MW_H3PO4 & & Kg/mole & molecular weight of phosphoric acid \\
\hline & . 0969874 & MW_H2PO4 & & Kg / mole & molecular weight of phosphate dihydrate ion \\
\hline & . 0959794 & MW_HPO4 & & Kg/mole & molecular weight of hydrated phosphate ion \\
\hline & . 0970716 & MW_HSO4 & & Kg / mole & molecular weight of hydrated sulfate ion \\
\hline & . 0960636 & MW_SO4 & & Kg/mole & molecular weight of sulfate ion \\
\hline & . 001008 & MW_H & & Kg / mole & molecular weight of hydrogen ion \\
\hline & . 040078 & MW_Ca & & Kg / mole & molecular weight of calcium ion \\
\hline & . 172172 & MW_Gypsum & & Kg / mole & molecular weight of gypsum \\
\hline & . 172088 & MW_DCPD & & Kg / mole & molecular weight of DCPD \\
\hline & -1 & z_H2PO4 & & & Charge of phosphate dihydrate ion \\
\hline & -2 & z_HPO4 & & & Charge of sulfate dihydrate ion \\
\hline & -1 & \(z_{-} \mathrm{HSO} 4\) & & & Charge of sulfate hydrate ion \\
\hline & -2 & z_SO4 & & & Charge of sulfate ion \\
\hline & 1 & \(z_{-} \mathrm{H}\) & & & Charge of hydrogen ion \\
\hline & 2 & \(z_{-} \mathrm{Ca}\) & & & Charge of calcium ion \\
\hline & & m_H2O & 55.50806532 & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & molality of water \\
\hline L & & m_H3PO4 & 7.549047485 & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & molality of phosphoric acid \\
\hline L & & m_H2PO4 & . 2652079088 & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & molality of phosphate dihydrate ion \\
\hline L & & m_HPO4 & \(4.427943 \mathrm{E}-8\) & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & molality of sulfate dihydrate ion \\
\hline LGuess & . 2355200522 & m_HSO4 & & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & molality of sulfate hydrate ion \\
\hline LGuess & . 0016061009 & m_SO4 & & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & molality of sulfate ion \\
\hline LGuess & . 5039402022 & m_H & & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & molality of hydrogen ion \\
\hline \multirow[t]{2}{*}{L} & & \(\mathrm{m}_{-} \mathrm{Ca}\) & \(2.455495 \mathrm{E}-8\) & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & molality of calcium ion \\
\hline & & a_H2O & 1213.759403 & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & activity of water \\
\hline L & & a_H3PO4 & 30.99799863 & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & activity of phosphoric acid \\
\hline L & & a_H2PO4 & . 2386572731 & mol/ Kg H2O & activity of phosphate dihydrate ion \\
\hline L & & a_HPO4 & \(2.90372 \mathrm{E}-8\) & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & activity of sulfate dihydrate ion \\
\hline L & & \(a_{\text {_ }} \mathrm{HSO}_{4}\) & . 2119415431 & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & activity of sulfate hydrate ion \\
\hline L & & a_SO4 & . 0010532359 & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & activity of sulfate ion \\
\hline L & & a_H & . 4534894719 & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & activity of hydrogen ion \\
\hline \multirow[t]{5}{*}{L} & & a_Ca & \(1.610244 \mathrm{E}-8\) & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H2O}\) & activity of calcium ion \\
\hline & & \(\gamma_{-} \mathrm{H} 2 \mathrm{O}\) & 21.86636115 & & activity coefficient of water \\
\hline & & \(\gamma_{-} \mathrm{H} 3 \mathrm{PO} 4\) & 4.106213226 & & activity coefficient of phosphoric acid \\
\hline & & \(\gamma_{\sim} \mathrm{H} 2 \mathrm{PO} 4\) & . 8998874666 & & activity coefficient of phosphate dihydrate ion \\
\hline & & \(\gamma_{-} \mathrm{HPO} 4\) & . 6557719142 & & activity coefficient of sulfate dihydrate ion \\
\hline Guess & . 8998874666 & \(\gamma_{\sim}\) HSO4 & & & activity coefficient of sulfate hydrate ion \\
\hline Guess & . 6557719142 & \(\gamma_{-}\)SO4 & & & activity coefficient of sulfate ion \\
\hline \multirow[t]{12}{*}{Guess} & . 8998874666 & \(\gamma_{-} \mathrm{H}\) & & & activity coefficient of hydrogen ion \\
\hline & & \(\gamma_{-} \mathrm{Ca}\) & . 6557719142 & & activity coefficient of calcium ion \\
\hline & 75.35 & Cpr_H2O & & \(\mathrm{J} / \mathrm{mol} \mathrm{K}\) & reference state heat capacity of water \\
\hline & 65 & Cpr_H3PO4 & & J/mol K & reference state heat capacity of phosphoric acid \\
\hline & -90 & Cpr_H2PO4 & & \(\mathrm{J} / \mathrm{mol} \mathrm{K}\) & reference state heat capacity of phosphate dihydrate ion \\
\hline & -316 & Cpr_HPO4 & & J/mol K & reference state heat capacity of sulfate dihydrate ion \\
\hline & -84 & Cpr_HSO4 & & J/mol K & reference state heat capacity of sulfate hydrate ion \\
\hline & -293 & Cpr_SO4 & & \(\mathrm{J} / \mathrm{mol} \mathrm{K}\) & reference state heat capacity of sulfate ion \\
\hline & 0 & Cpr_H & & \(\mathrm{J} / \mathrm{mol} \mathrm{K}\) & reference state heat capacity of hydrogen ion \\
\hline & -37 & Cpr_Ca & & J/mol K & reference state heat capacity of calcium ion \\
\hline & 186 & Cpr_Gypsum & & J/mol K & reference state heat capacity of gypsum \\
\hline & 197 & Cpr_DCPD & & \(\mathrm{J} / \mathrm{mol} \mathrm{K}\) & reference state heat capacity of DCPD \\
\hline
\end{tabular}

\section*{Appendix 8. (Continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Status & Input & Name & Output & Unit & Comment \\
\hline & -285830 & Hr_H2O & & J/mol & reference state enthalpy of water \\
\hline & -1288340 & \(\mathrm{Hr}_{-} \mathrm{H} 3 \mathrm{PO} 4\) & & J/mol & reference state enthalpy of phosphoric acid \\
\hline & -1296290 & Hr_H2PO4 & & J/mol & reference state enthalpy of phosphate dihydrate ion \\
\hline & -1292140 & Hr_HPO4 & & J/mol & reference state enthalpy of sulfate dihydrate ion \\
\hline & -887340 & Hr_HSO4 & & J/mol & reference state enthalpy of sulfate hydrate ion \\
\hline & -909270 & Hr_SO4 & & J/mol & reference state enthalpy of sulfate ion \\
\hline & 0 & Hr_H & & J/mol & reference state enthalpy of hydrogen ion \\
\hline & -542830 & Hr - Ca & & J/mol & reference state enthalpy of calcium ion \\
\hline & -2022600 & Hr_Gypsum & & J/mol & reference state enthalpy of gypsum \\
\hline & -2403580 & Hr_DCPD & & J/mol & reference state enthalpy of DCPD \\
\hline & -237140 & Gr_H2O & & J/mol & reference state Gibbs free energy of water \\
\hline & -1142650 & Gr_H3PO4 & & J/mol & reference state Gibbs free energy of phosphoric acid \\
\hline & -1130390 & Gr_H2PO4 & & J/mol & reference state Gibbs free energy of phosphate dihydrate ion \\
\hline & -1089260 & Gr_HPO4 & & J/mol & reference state Gibbs free energy of sulfate dihydrate ion \\
\hline & -755910 & Gr_HSO4 & & J/mol & reference state Gibbs free energy of sulfate hydrate ion \\
\hline & -744530 & Gr_SO4 & & J/mol & reference state Gibbs free energy of sulfate ion \\
\hline & 0 & Gr_H & & J/mol & reference state Gibbs free energy of hydrogen ion \\
\hline & -553540 & Gr_Ca & & \(\mathrm{J} / \mathrm{mol}\) & reference state Gibbs free energy of calcium ion \\
\hline & -1797500 & Gr_Gypsum & & \(\mathrm{J} / \mathrm{mol}\) & reference state Gibbs free energy of gypsum \\
\hline & -2154750 & Gr_DCPD & & \(\mathrm{J} / \mathrm{mol}\) & reference state Gibbs free energy of DCPD \\
\hline & & \(\Delta \mathrm{Cpr}\) _HSO4 & -209 & J/mol K & reference state heat capacity of HSO4 dissolution \\
\hline & & \(\triangle \mathrm{Cpr}_{-} \mathrm{H} 3 \mathrm{PO} 4\) & -155 & J/mol K & reference state heat capacity of H 3 PO 4 dissolution \\
\hline & & \(\triangle \mathrm{Cpr}\) - H 2 PO 4 & -226 & \(\mathrm{J} / \mathrm{mol} \mathrm{K}\) & reference state heat capacity of H 2 PO 4 dissolution \\
\hline & & \(\Delta\) Cpr_Gypsum & -365.3 & J/mol K & reference state heat capacity of gypsum solubility \\
\hline & & \(\triangle \mathrm{Cpr}\) _DCPD & -399.3 & \(\mathrm{J} / \mathrm{mol} \mathrm{K}\) & reference state heat capacity of DCPD solubility \\
\hline & & \(\triangle \mathrm{Hr}_{-} \mathrm{HSO} 4\) & -21930 & J/mol & reference state enthalpy of HSO4 dissolution \\
\hline & & \(\triangle \mathrm{Hr}_{-} \mathrm{H} 3 \mathrm{PO} 4\) & -7950 & J/mol & reference state enthalpy of H3PO4 dissolution \\
\hline & & \(\Delta \mathrm{Hr}_{-} \mathrm{H} 2 \mathrm{PO} 4\) & 4150 & J/mol & reference state enthalpy of H 2 PO 4 dissolution \\
\hline & & \(\Delta \mathrm{Hr}\) _Gypsum & -1160 & J/mol & reference state enthalpy of gypsum solubility \\
\hline & & \(\triangle H r_{-}\)DCPD & -3050 & \(\mathrm{J} / \mathrm{mol}\) & reference state enthalpy of DCPD solubility \\
\hline & & \(\Delta \mathrm{Gr}\) _HSO4 & 11380 & \(\mathrm{J} / \mathrm{mol}\) & reference state Gibbs free energy of HSO4 dissolution \\
\hline & & \(\Delta \mathrm{Gr}\) - H 3 PO 4 & 12260 & \(\mathrm{J} / \mathrm{mol}\) & reference state Gibbs free energy of H 3 PO 4 dissolution \\
\hline & & \(\Delta \mathrm{Gr} \mathrm{H}_{-} \mathrm{P} 2 \mathrm{PO} 4\) & 41130 & \(\mathrm{J} / \mathrm{mol}\) & reference state Gibbs free energy of H2PO4 dissolution \\
\hline & & \(\Delta \mathrm{Gr}\) _Gypsum & 25150 & J/mol & reference state Gibbs free energy of gypsum solubility \\
\hline & & \(\Delta \mathrm{Gr}\) _ DCPD & 37670 & \(\mathrm{J} / \mathrm{mol}\) & reference state Gibbs free energy of DCPD solubility \\
\hline & -310.007382 & \(\Delta \mathrm{Cp}\) _HSO4 & & J/mol K & adjusted reference state heat capacity of HSO4 dissolution \\
\hline & -155.414457 & \(\Delta \mathrm{Cp}_{-} \mathrm{H} 3 \mathrm{PO} 4\) & & \(\mathrm{J} / \mathrm{mol} \mathrm{K}\) & adjusted reference state heat capacity of H3PO4 dissolution \\
\hline & -248.97289 & \(\Delta \mathrm{Cp}_{-} \mathrm{H} 2 \mathrm{PO} 4\) & & \(\mathrm{J} / \mathrm{mol} \mathrm{K}\) & adjusted reference state heat capacity of H 2 PO 4 dissolution \\
\hline & -493.589237 & \(\Delta \mathrm{Cp}\) _Gypsum & & \(\mathrm{J} / \mathrm{mol} \mathrm{K}\) & adjusted reference state heat capacity of gypsum solubility \\
\hline & -1415.45 & \(\triangle \mathrm{Cp}\) _DCPD & & \(\mathrm{J} / \mathrm{mol} \mathrm{K}\) & adjusted reference state heat capacity of DCPD solubility \\
\hline & -16928.3281 & \(\Delta \mathrm{H}\) _HSO4 & & \(\mathrm{J} / \mathrm{mol}\) & adjusted reference state enthalpy of HSO4 dissolution \\
\hline & -7663.32187 & \(\Delta \mathrm{H}_{-} \mathrm{H} 3 \mathrm{PO} 4\) & & \(\mathrm{J} / \mathrm{mol}\) & adjusted reference state enthalpy of H3PO4 dissolution \\
\hline & 4033.524376 & \(\Delta \mathrm{H}_{-} \mathrm{H} 2 \mathrm{PO} 4\) & & \(\mathrm{J} / \mathrm{mol}\) & adjusted reference state enthalpy of H2PO4 dissolution \\
\hline & 4338.149706 & -H_Gypsum & & \(\mathrm{J} / \mathrm{mol}\) & adjusted reference state enthalpy of gypsum solubility \\
\hline & 258.55 & \(\triangle H_{-}\)DCPD & & \(\mathrm{J} / \mathrm{mol}\) & adjusted reference state enthalpy of DCPD solubility \\
\hline & . 0103038612 & Kr_HSO4 & & mol / Kg H2O & reference state equilibrium constant of HSO4 dissolution \\
\hline & . 0071121351 & Kr_H3PO4 & & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H2O}\) & reference state equilibrium constant of H3PO4 dissolution \\
\hline & \(6.338697 \mathrm{E}-8\) & \(\mathrm{Kr}_{-} \mathrm{H} 2 \mathrm{PO} 4\) & & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & reference state equilibrium constant of H 2 PO 4 dissolution \\
\hline & . 0000422 & Kspr_Gypsum & & \((\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O})^{\wedge} 4\) & reference state solubility product of gypsum \\
\hline & \(2.512663 \mathrm{E}-7\) & Kspr_DCPD & & \((\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O})^{\wedge} 4\) & reference state solubility product of DCPD \\
\hline L & & K_HSO4 & . 0022535996 & mol / Kg H2O & equilibrium constant of HSO4 dissolution \\
\hline L & & K_H3PO4 & . 0034914693 & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & equilibrium constant of H 3 PO 4 dissolution \\
\hline L & & K_H2PO4 & \(5.517563 \mathrm{E}-8\) & \(\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O}\) & equilibrium constant of H 2 PO 4 dissolution \\
\hline L & & Ksp_Gypsum & \(2.560637 \mathrm{E}-5\) & \((\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O})^{\wedge} 4\) & solubility product of gypsum \\
\hline L & & Ksp_DCPD & \(2.839507 \mathrm{E}-8\) & \((\mathrm{mol} / \mathrm{Kg} \mathrm{H} 2 \mathrm{O})^{\wedge} 4\) & solubility product of DCPD \\
\hline
\end{tabular}

UNIVERSITY OF SOUTH FLORIDA


32102036399182
splColl```

